This paper presents an automatic speaker identification and speech recognition for Arabic digits in noisy environment. In this work, the proposed system is able to identify the speaker after saving his voice in the database and adding noise. The mel frequency cepstral coefficients (MFCC) is the best approach used in building a program in the Matlab platform; also, the quantization is used for generating the codebooks. The Gaussian mixture modelling (GMM) algorithms are used to generate template, feature-matching purpose. In this paper, we have proposed a system based on MFCC-GMM and MFCC-VQ approaches on the one hand and by using the hybrid approach MFCC-VQ-GMM on the other hand for speaker modeling. The white Gaussian noise is added to the clean speech at several signal-to-noise ratio (SNR) levels to test the system in a noisy environment. The proposed system gives good results in recognition rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.