This work presents a formalized methodology for salt's separation from three component electrolytic systems. The methodology is based on the multi-variant modelling block of a generalized crystallization process, with options for simulating the boundary conditions of feasible equilibrium processes and the elements of crystallization techniques. The following techniques are considered: cooling crystallization, adiabatic evaporative-cooling crystallization, salt-out crystallization, isothermal crystallization, and a combination of the mentioned techniques. The multi-variant options of the crystallization module are based on different variable sets with assigned values for solving mathematical models of generalized crystallization processes. The first level of the methodology begins with the determination of salt crystallization paths from a hypothetical electrolytic AX-BX-H2O system, following by an examination of salt-cooling crystallization possibilities. The second level determines feasible processes by the communication of a feed-system with the environment through a stream of evaporated water, or introduced water with introduced crystallized BX salt. The third level determines the value intervals of the variables for feasible processes. The methodological logic and possibilities for the created process simulator are demonstrated on examples of sodium sulphate separation from the NaCl-Na2SO4-H2O system, using different salt concentrations within the feed system
A review of the literature dealing with the electrochemical corrosion of copper and its alloys with purpose to find the most suitable inhibitor for its protection has been done. According to their chemical composition of corrosion inhibitors are divided into inorganic and organic inhibitors. Inhibition of alloying metals are possible (such as the addition of arsenic alloy components in brass, preventing its unzincanization). The paper reviews the theoretical basis of application of inhibitors to protect metals from corrosion as well as an overview of current research application of inhibitors to protect copper and copper alloys. Benzotriazole (BTA) is most often used corrosion inhibitor for copper and its alloys in acidic and alkaline solution, because of its high inhibition efficiency. The lowest concentration of inhibitor for protection of copper in various solutions was 0.05%, and for the protection of copper in contact with steel is 0.1%. On the surface of copper and brass BTA forms a protective Cu-BTA film. However, BTA is like many other synthesized organic inhibitors is very toxic and if used in very small concentrations. It turned out that the AETD, AETDA and PTAT good corrosion inhibitors of copper mixed type with the efficiency of inhibition increases with concentration. Due to the adverse effects on the environment, health and other bodies in recent times the focus of research is transferred to the inhibiting action of biological molecules or mixtures of natural compounds called "Green inhibitors".
In this paper, a computer aided analysis and synthesis of the crystallization processes from multicomponent electrolyte systems were studied. In addition, the vacuum crystallization processes with adiabatic cooling of the system are presented. The cooling process of a multicomponent electrolyte system can be considered as a process with the concentration of the system and/or the crystallization of the solid phase from the system. Requirements for multivariant options of the process simulator are the result of practical needs in the design of new processes or the improvement of exploitation processes. According to this, there are needs for a simulation of a simple flashing of the system as well as for the vacuum cooling crystallization processes with the cyclic structure. The possibilities of the created process simulator are illustrated on three component electrolyte systems. Application of the process simulator for any other electrolyte systems requires only an update of the thermodynamic model, and physico-chemical properties related to electrolyte system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.