BackgroundCypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp).ResultsConcatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae.ConclusionsMost major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0819-5) contains supplementary material, which is available to authorized users.
The order Cypriniformes is the most diverse order of freshwater fishes. Recent phylogenetic studies have approached a consensus on the phylogenetic relationships of Cypriniformes and proposed a new phylogenetic classification of familylevel groupings in Cypriniformes. The lack of a reference for the placement of genera amongst families has hampered the adoption of this phylogenetic classification more widely. We herein provide an updated compilation of the membership of genera to suprageneric taxa based on the latest phylogenetic classifications. We propose a new taxon: subfamily Esominae within Danionidae, for the genus Esomus.
BackgroundThe whale shark (Rhincodon typus) has by far the largest body size of any elasmobranch (shark or ray) species. Therefore, it is also the largest extant species of the paraphyletic assemblage commonly referred to as fishes. As both a phenotypic extreme and a member of the group Chondrichthyes – the sister group to the remaining gnathostomes, which includes all tetrapods and therefore also humans – its genome is of substantial comparative interest. Whale sharks are also listed as an endangered species on the International Union for Conservation of Nature’s Red List of threatened species and are of growing popularity as both a target of ecotourism and as a charismatic conservation ambassador for the pelagic ecosystem. A genome map for this species would aid in defining effective conservation units and understanding global population structure.ResultsWe characterised the nuclear genome of the whale shark using next generation sequencing (454, Illumina) and de novo assembly and annotation methods, based on material collected from the Georgia Aquarium. The data set consisted of 878,654,233 reads, which yielded a draft assembly of 1,213,200 contigs and 997,976 scaffolds. The estimated genome size was 3.44Gb. As expected, the proteome of the whale shark was most closely related to the only other complete genome of a cartilaginous fish, the holocephalan elephant shark. The whale shark contained a novel Toll-like-receptor (TLR) protein with sequence similarity to both the TLR4 and TLR13 proteins of mammals and TLR21 of teleosts. The data are publicly available on GenBank, FigShare, and from the NCBI Short Read Archive under accession number SRP044374.ConclusionsThis represents the first shotgun elasmobranch genome and will aid studies of molecular systematics, biogeography, genetic differentiation, and conservation genetics in this and other shark species, as well as providing comparative data for studies of evolutionary biology and immunology across the jawed vertebrate lineages.
Parallel adaptive radiations have arisen following the colonization of islands by lizards and lakes by fishes. In these classic examples, parallel adaptive radiation is a response to the ecological opportunities afforded by the colonization of novel ecosystems and similar adaptive landscapes that favour the evolution of similar suites of ecomorphs, despite independent evolutionary histories. Here, we demonstrate that parallel adaptive radiations of cichlid fishes arose in South American rivers. Speciation-assembled communities of pike cichlids () have independently diversified into similar suites of novel ecomorphs in the Uruguay and Paraná Rivers, including crevice feeders, periphyton grazers and molluscivores. There were bursts in phenotypic evolution associated with the colonization of each river and the subsequent expansion of morphospace following the evolution of the ecomorphs. These riverine clades demonstrate that characteristics emblematic of textbook parallel adaptive radiations of island- and lake-dwelling assemblages are feasible evolutionary outcomes even in labile ecosystems such as rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.