Periostin (POSTN) is a limiting factor in the metastatic colonization of disseminated tumour cells. However, the role of POSTN in regulating the immunosuppressive function of immature myeloid cells in tumour metastasis has not been documented. Here, we demonstrate that POSTN promotes the pulmonary accumulation of myeloid-derived suppressor cells (MDSCs) during the early stage of breast tumour metastasis. Postn deletion decreases neutrophil and monocytic cell populations in the bone marrow of mice and suppresses the accumulation of MDSCs to premetastatic sites. We also found that POSTN-deficient MDSCs display reduced activation of ERK, AKT and STAT3 and that POSTN deficiency decreases the immunosuppressive functions of MDSCs during tumour progression. Moreover, the pro-metastatic role of POSTN is largely limited to ER-negative breast cancer patients. Lysyl oxidase contributes to POSTN-promoted premetastatic niche formation and tumour metastasis. Our findings indicate that POSTN is essential for immunosuppressive premetastatic niche formation in the lungs during breast tumour metastasis and is a potential target for the prevention and treatment of breast tumour metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
BackgroundA shift from oxygen phosphorylation to aerobic glycolysis was known as the Warburg effect and a characteristic of cancer cell metabolism facilitating metastasis. Mitochondrial calcium uniporter (MCU), a key ion channel that mediates Ca2+ uptake into mitochondria, was found to promote cancer progression and metastasis. However, its explicit role in shifting metabolism of breast cancer cells has not been defined.MethodsWe evaluated MCU overexpression or knock-down on migration, invasion and glucose metabolismin breast cancer cells. Mitochondrial Ca2+ dynamics were monitored with Rhod-2 fluorescence imaging. Luciferase reporter assay was used to confirm the interaction between miR-340 and 3’-untranslated region (3’-UTR) of MCU gene. Mouse models of lung metastasis were used to determine whether gain-/loss-of-MCU impacts metastasis. MCU expression was assessed in 60 tumor samples from breast cancer patients by immunohistochemistry (IHC).ResultsKnockdown of MCU in MDA-MB-231 cells significantly reduced cell migration and invasion in vitro and lung metastasis in vivo; whereas overexpression of MCU in MCF-7 cells significantly increased migration and invasion in vitro and lung metastasis in vivo. Overexpression of MCU promoted lung metastasis by enhancing glycolysis, whereas suppression of MCU abolished this effect. Moreover, a novel mechanism was identified that MCU was a direct target of microRNA-340, which suppressed breast cancer cell motility by inhibiting glycolysis. Consistently, significantly increased MCU protein was found in metastatic breast cancer patients.ConclusionsWe identified a novel mechanism that upregulated MCU promotes breast cancer metastasis via enhancing glycolysis, and that this process is posttranscriptionally and negatively regulated by microRNA-340.
Purpose: Retinal ischemia-associated ocular disorders are vision threatening. This study examined whether the flavonoid baicalein is able to protect against retinal ischemia/reperfusion. Methods: Using rats, the intraocular pressure was raised to 120 mmHg for 60 min to induce retinal ischemia. In vitro, an ischemic-like insult, namely oxidative stress, was established by incubating dissociated retinal cells with 100 mM ascorbate and 5 mM FeSO 4 (iron) for 1 h. The rats or the dissociated cells had been pretreated with baicalein (in vivo: 0.05 or 0.5 nmol; in vitro: 100 mM), vehicle (1% ethanol), or trolox (in vivo: 5 nmol; in vitro: 100 mM or 1 mM). The effects of these treatments on the retina or the retinal cells were evaluated by electrophysiology, immunohistochemistry, terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TU-NEL) staining, Western blotting, or in vitro dichlorofluorescein assay. In addition, real-time-polymerase chain reaction was used to assess the retinal expression of hypoxia-inducible factor-1a (HIF-1a), matrix metalloproteinase-9 (MMP-9), vascular endothelium growth factor (VEGF), and heme oxygenase-1 (HO-1). Results: The retinal changes after ischemia included a decrease in the electroretinogram b-wave amplitude, a loss of choline acetyltransferase immunolabeling amacrine cell bodies/neuronal processes, an increase in vimentin immunoreactivity, which is a marker for Mü ller cells, an increase in apoptotic cells in the retinal ganglion cell layer linked to a decrease in the Bcl-2 protein, and changes in the mRNA levels of HIF-1a, VEGF, MMP-9, and HO-1. Of clinical importance, the ischemic detrimental effects were concentration dependently and/or significantly (0.05 nmol and/or 0.5 nmol) altered when baicalein was applied 15 min before retinal ischemia. Most of all, 0.5 nmol baicalein significantly reduced the upregulation of MMP-9; in contrast, 5 nmol trolox only had a weak attenuating effect. In dissociated retinal cells subjected to ascorbate/iron, there was an increase in the levels of reactive oxygen species, which had been significantly attenuated by 100 mM baicalein and trolox (100 mM or 1 mM; a stronger antioxidative effect at 1 mM). Conclusions: Baicalein would seem to protect against retinal ischemia via antioxidation, antiapoptosis, upregulation of HO-1, and downregulation of HIF-1a, VEGF, and MMP-9. The antioxidative effect of baicalein would appear to play a minor role in downregulation of MMP-9. IntroductionC entral retinal artery occlusion, central retinal vein occlusion, branch retinal artery occlusion, branch retinal vein occlusion, glaucoma, and age-related macular degeneration (AMD) are all associated with retinal ischemia.1-3 All these diseases may lead to severe sequelae and therefore the management of retinal ischemia is crucial. After ischemia/ reperfusion (I/R), large amounts of reactive oxygen species (ROS) are produced.1,2 These ROS attack nearby cells and
Purpose: Retinal ischemia-associated ocular disorders, such as retinal occlusive disorders, neovascular agerelated macular degeneration, proliferative diabetic retinopathy, and glaucoma are vision-threatening. In this study, we examined whether and by what mechanisms resveratrol, a polyphenol found in red wine, is able to protect against retinal ischemia/reperfusion injury. Methods: In vivo rat retinal ischemia was induced by high intraocular pressure (HIOP), namely, 120 mmHg for 60 min. The mechanism and management was evaluated by electroretinogram (ERG) b-wave amplitudes measurement, immunohistochemistry, and real-time polymerase chain reaction. Results: The HIOP-induced retinal ischemic changes were characterized by a decrease in ERG b-wave amplitudes, a loss of choline acetyltransferase immunolabeling of amacrine cell bodies/neuronal processes, and increased vimentin immunoreactivity, which is a marker of Mü ller cells, together with upregulation of matrix metalloproteinase-9 (MMP-9), heme oxygenase-1 (HO-1), and inducible nitric oxide (iNOS), and downregulation of Thy-1, both at the mRNA level. The detrimental effects due to the ischemia were concentration-dependent (weaker effect at 0.05 nmole) and/or significantly (at 0.5 nmole) altered when resveratrol was applied 15 min before or after retina ischemia. Conclusion: This study supports the hypothesis that resveratrol may be able to protect the retina against ischemia by downregulation of MMP-9 and iNOS, and upregulation of HO-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.