Nitroaromatic compounds are inherently nonfluorescent, and the subpicosecond lifetimes of the singlet excited states of many small nitrated polycyclic aromatic hydrocarbons, such as nitronaphthalenes, render them unfeasible for photosensitizers and photo-oxidants, despite their immensely beneficial reduction potentials. This article reports up to a 7000-fold increase in the singlet-excited-state lifetime of 1-nitronaphthalene upon attaching an amine or an N-amide to the ring lacking the nitro group. Varying the charge-transfer (CT) character of the excited states and the medium polarity balances the decay rates along the radiative and the two nonradiative pathways and can make these nitronaphthalene derivatives fluoresce. The strong electron-donating amine suppresses intersystem crossing (ISC) but accommodates CT pathways of nonradiate deactivation. Conversely, the N-amide does not induce a pronounced CT character but slows down ISC enough to achieve relatively long lifetimes of the singlet excited state. These paradigms are key for the pursuit of electron-deficient (n-type) organic conjugates with promising optical characteristics.
Natural dyes and pigments offer incomparable diversity of structures and functionalities, making them an excellent source of inspiration for the design and development of synthetic chromophores with a myriad of emerging properties. Formed during maturation of red wines, pyranoanthocyanins are electron-deficient cationic pyranoflavylium dyes with broad absorption in the visible spectral region and pronounced chemical and photostability. Herein, we survey the optical and electrochemical properties of synthetic pyranoflavylium dyes functionalized with different electron-donating and electron-withdrawing groups, which vary their reduction potentials over a range of about 400 mV. Despite their highly electron-deficient cores, the exploration of pyranoflavyliums as photosensitizers has been limited to the “classical” n-type dye-sensitized solar cells (DSSCs) where they act as electron donors. In light of their electrochemical and spectroscopic properties, however, these biomimetic synthetic dyes should prove to be immensely beneficial as chromophores in p-type DSSCs, where their ability to act as photooxidants, along with their pronounced photostability, can benefit key advances in solar-energy science and engineering.
Biological structure-function relationships offer incomparable paradigms for charge-transfer (CT) science and its implementation in solar-energy engineering, organic electronics, and photonics. Electrets are systems with co-directionally oriented electric dopes with immense importance for CT science, and bioinspired molecular electrets are polyamides of anthranilic-acid derivatives with designs originating from natural biomolecular motifs. This publication focuses on the synthesis of molecular electrets with ether substituents. As important as ether electret residues are for transferring holes under relatively high potentials, the synthesis of their precursors presents formidable challenges. Each residue in the molecular electrets is introduced as its 2-nitrobenzoic acid (NBA) derivative. Hence, robust and scalable synthesis of ether derivatives of NBA is essential for making such hole-transfer molecular electrets. Purdie-Irvine alkylation, using silver oxide, produces with 90% yield the esters of the NBA building block for iso-butyl ether electrets. It warrants additional ester hydrolysis for obtaining the desired NBA precursor. Conversely, Williamson etherification selectively produces the same free-acid ether derivative in one-pot reaction, but a 40% yield. The high yields of Purdie-Irvine alkylation and the selectivity of the Williamson etherification provide important guidelines for synthesizing building blocks for bioinspired molecular electrets and a wide range of other complex ether conjugates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.