BackgroundBud mutation is a vital method of citrus. ‘Wuzi Ougan’ (mutant type, MT) as a bud variant of ‘Ougan’ (wild type, WT) was first found in 1996 and has become popular because of its male sterility and seedless character. Previous analysis of its cytological sections and transcriptome revealed that the abnormal microsporogenesis that occurs before the tetrad stage of anther development might be the result of down-regulated oxidation-reduction biological processes in MT. To reveal the mechanism behind the male sterility in MT at the post-transcriptional stage, proteome profiling and integrative analysis on previously obtained transcriptome and proteome data were performed in two strains.ResultsThe proteome profiling was performed by iTRAQ (isobaric Tags for relative and absolute quantitation) analysis and 6201 high-confidence proteins were identified, among which there were 487 differentially expressed proteins (DEPs) in one or more developmental stages of anthers between MT and WT. The main functional subcategories associated with the main category biological process into which the DEPs were classified were sporopollenin biosynthesis process and pollen exine formation. The enriched pathways were phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism. Moreover, there were eight pathways linked in terms of being related to phenylpropanoid metabolism. Eighteen important genes related to phenylpropanoid metabolism were also analysized by qRT-PCR (quantitative real time PCR). An integrative analysis of the fold change at the transcript (log2 FPKM ratios) and protein (log1.2 iTRAQ ratios) levels was performed to reveal the consistency of gene expression at transcriptional and proteomic level. In general, the expression of genes and proteins tended to be positively correlated, in which the correlation coefficients were 0.3414 (all genes and all proteins) and 0.5686 (DEPs and according genes).ConclusionThis study is the first to offer a comprehensive understanding of the gene regulation in ‘Wuzi Ougan’ and its wild type, especially during the microsporocyte to meiosis stage. Specifically, the involved genes include those in phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism, as determined by integrative transcriptome and proteome analysis.Electronic supplementary materialThe online version of this article (10.1186/s12863-018-0693-9) contains supplementary material, which is available to authorized users.
Immunoglobulin G is an important plasma protein with many applications in therapeutics and diagnostics, which can be purified effectively by ion exchange chromatography. The ligand densities and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In this work, with bovine immunoglobulin as the model IgG, the adsorption isotherms and adsorption kinetics were investigated systematically with series of diethylaminoethyl ion-exchange resins with different ligand densities and pore sizes. The Langmuir equation and pore diffusion model were used to fit the experimental data. The influences of ligand density and pore size on the saturated adsorption capacity, the dissociation constant and the effective diffusivity were discussed. The adsorption capacities increased with the increase of ligand density and the decrease of pore size, and an integrative parameter was proposed to describe the combined effects of ligand density and pore size. It was also found that the effective pore diffusion coefficient of the adsorption kinetics was influenced by pore sizes of resins, but was relatively independent on the ligand densities of resins. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.
BACKGROUND: Anion exchange resins are used extensively for the purification of acidic proteins. Grafting charged polymers to a rigid porous structure has been shown to improve performance under varying conditions. Understanding the underlying mechanisms is important for the optimum design and selection of material properties and operating conditions. RESULTS: Positively charged grafted polymers incorporated into a rigid, porous polymeric backbone structure are found to significantly enhance adsorption capacity and kinetics of the proteins bovine serum albumin (BSA, M r ∼ 65 kDa) and thyroglobulin (Tg, M r ∼ 660 kDa) but under different conditions. For the smaller BSA, binding increases with grafted polymer length and content and decreases with salt concentration. For the much larger Tg, binding increases with the addition of some salt for the polymer-grafted resins but can be lower than that observed for ungrafted resins without added salt. This behavior is caused by diffusional hindrance due to the bound protein. Increasing the length of the grafted polymer or the pore size of the backbone improves the Tg adsorption kinetics. CONCLUSION: Protein adsorption is controlled by different mechanisms dependent on polymer grafting, backbone structure, and size of the adsorbed protein. Optimum selection of resin properties and conditions is needed to maximize adsorption capacity and mass transfer kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.