The protection and preservation of groundwater resources are compulsory, particularly in the arid and semiarid countries where the waters are scarce. The effects of increasing urbanization, economic development, and agricultural activities, along with the erratic and scarce rainfall, contribute to the quantitative and qualitative deterioration of these resources. This paper attempts to produce groundwater vulnerability and risk maps for the Angad transboundary aquifer using DRASTIC model. The data which correspond to the seven parameters of the model were collected and converted to thematic maps in Geographic Information System environment. The modified DRASTIC map, which is the summation of the DRASTIC index and the network fractures maps, shows two degreed of vulnerability: medium and high. This map is then integrated with a land use map to assess the potential risk of groundwater to pollution in the Angad transboundary aquifer. There are three risk zones that are identified: moderate, high, and very high.
A density-dependent numerical groundwater model was applied to study the climate change impact in a shallow aquifer in the Mediterranean coast of Morocco, the Saïdia aquifer. The stresses imposed to the model were derived from the IPCC emission scenarios and included recharge variation and sea level rise. The main effect of the climate change in the Saïdia aquifer will be a decrease in renewable resources, which in the worst-case scenario may decrease to 50-60% of present-day values, due to the decline in recharge and to a reduced inflow from the adjacent Triffa aquifer. The water quality will be affected mostly in the area immediately adjacent to the seashore, where salinity may increase up to 30 g/l. Localised areas may see a decrease in salinity due to the induced freshwater recharge from Oued Moulouya River and diminished inflow from high-salinity springs.
La plaine des Triffa a connu une longue période de sécheresse, qui a abouti à une intense exploitation des ressources hydriques et, par conséquent, à une dégradation importante de la qualité des eaux et à une chute considérable du niveau piézométrique. L'extension géographique de cette salinisation et son origine ont été déterminées par l'application des sondages géo-électriques verticaux de type Schlumberger et par une mesure directe de la conductivité de l'eau dans les puits et les sources sur le terrain, suivie d'une analyse chimique. Un modèle conceptuel des sources salées de la plaine a été établi.
Data from temperature measurements in boreholes are indicators of the temperature variations associated with past climate change. This paper is a contribution to reconstruct the ground surface temperature history (GSTH) from geothermal data in the eastern part of Morocco. From a set of several temperature logs, measured in the study area, only two were found suitable for estimating the ground surface temperature history (GSTH). In order to reconstruct the surface temperature past changes the functional space inversion method (FSI) was used. The inversion reveals a recent warming in the last century with respective amplitude of 0.1°C and 1°C for the boreholes 2952 in Oujda and 1624 in Berkane. These results can be confirmed by the air temperature record of the meteorical station in Oujda despite the scarceness of data beyond 1959.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.