In mouse tooth development, the roots of the first lower molar develop after crown formation to form 2 cylindrical roots by post-natal day 5. This study compared the morphogenesis and cellular events of the mesial-root-forming (MRF) and bifurcation-forming (BF) regions, located in the mesial and center of the first lower molar, to better define the developmental mechanisms involved in multi-rooted tooth formation. We found that the mesenchyme in the MRF showed relatively higher proliferation than the bifurcation region. This suggested that spatially regulated mesenchymal proliferation is required for creating cylindrical root structure. The mechanism may involve the mesenchyme forming a physical barrier to epithelial invagination of Hertwig's epithelial root sheath. To test these ideas, we cultured roots in the presence of pharmacological inhibitors of microtubule and actin polymerization, nocodazole and cytochalasin-D. Cytochalasin D also inhibits proliferation in epithelium and mesenchyme. Both drugs resulted in altered morphological changes in the tooth root structures. In particular, the nocodazole- and cytochalasin-D-treated specimens showed a loss of root diameter and formation of a single-root, respectively. Immunolocalization and three-dimensional reconstruction results confirmed these mesenchymal cellular events, with higher proliferation in MRF in multi-rooted tooth formation.
The molecular mechanisms for epithelial differentiation have been studied by observing skin development in embryogenesis, but the early signaling modulations involved in tongue epithelial differentiation are not completely understood. Based on the gene expression patterns of the Fgf signaling molecules and previous results from Fgf10 and Fgfr2b knockout mice, it was hypothesized that there would be fundamental signaling interactions through the epithelial Fgfr2b and its mesenchymal ligand Fgf10 to regulate tongue epithelium differentiation. To elucidate these reciprocal interactions in tongue epithelial differentiation, this study employed an in vitro tongue organ culture system with antisense-oligodeoxynucleotides (AS-ODNs) and recombinant protein-soaked bead implantation for the loss-of-function and gain-of-function studies. Functional analysis of Fgf signaling revealed precise reciprocal interactions, which showed that mesenchymal Fgf10 rather than Fgf7 modulates tongue epithelial differentiation via Fgfr2b in a temporal- and spatial-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.