Anion exchange membranes for a vanadium redox flow battery (VRB) were prepared by pore-filling on a PE substrate with the copolymerization of vinylbenzyl chloride (VBC) and glycidyl methacrylate (GMA). The ion exchange capacity, water uptake and weight gain ratio were increased with a similar tendency up to 65% of GMA content, indicating that the monomer improved the pore-filling degree and membrane properties. The vanadium ion permeability and open-circuit voltage were also investigated. The permeability of the VG65 membrane was only 1.23 × 10 −7 cm 2 min −1 compared to 17.9 × 10 −7 cm 2 min −1 for Nafion 117 and 1.8 × 10−7 cm 2 min −1 for AMV. Consequently, a VRB single cell using the prepared membrane showed higher energy efficiency (over 80%) of up to 100 cycles compared to the commercial membranes, Nafion 117 (ca. 58%) and AMV (ca. 70%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.