Perspective-taking is the ability to perceive or understand a situation or concept from another individual's point of view, and is crucial in daily human interactions. Enabling robots to perform perspective-taking remains an unsolved problem; existing approaches that use deterministic or handcrafted methods are unable to accurately account for uncertainty in partially-observable settings. This work proposes to address this limitation via a deep world model that enables a robot to perform both perception and conceptual perspective taking, i.e., the robot is able to infer what a human sees and believes. The key innovation is a decomposed multi-modal latent state space model able to generate and augment fictitious observations/emissions. Optimizing the ELBO that arises from this probabilistic graphical model enables the learning of uncertainty in latent space, which facilitates uncertainty estimation from high-dimensional observations. We tasked our model to predict human observations and beliefs on three partially-observable HRI tasks. Experiments show that our method significantly outperforms existing baselines and is able to infer visual observations available to other agent and their internal beliefs.
Trust in autonomy is essential for effective human-robot collaboration and user adoption of autonomous systems such as robot assistants. This paper introduces a computational model which integrates trust into robot decision-making. Specifically, we learn from data a partially observable Markov decision process (POMDP) with human trust as a latent variable. The trust-POMDP model provides a principled approach for the robot to (i) infer the trust of a human teammate through interaction, (ii) reason about the effect of its own actions on human trust, and (iii) choose actions that maximize team performance over the long term. We validated the model through human subject experiments on a table-clearing task in simulation (201 participants) and with a real robot (20 participants). In our studies, the robot builds human trust by manipulating low-risk objects first. Interestingly, the robot sometimes fails intentionally in order to modulate human trust and achieve the best team performance. These results show that the trust-POMDP calibrates trust to improve human-robot team performance over the long term. Further, they highlight that maximizing trust alone does not always lead to the best performance.:2 M. Chen et al. Fig. 1. A robot and a human collaborate to clear a table. The human, with low initial trust in the robot, intervenes to stop the robot from moving the wine glass.This study revealed that, in order to achieve fluent human-robot collaboration, the robot should monitor human trust and influence it so that it matches the system's capabilities. In our study, for instance, the robot should build human trust first by acting in a trustworthy manner, before going for the wine glass.We propose a trust-based computational model of robot decision making: Since trust is not fully observable, we model it as a latent variable in a partially observable Markov decision process (POMDP) [19]. Our trust-POMDP model contains two key components: (i) a trust dynamics model, which captures the evolution of human trust in the robot, and (ii) a human decision model, which connects trust with human actions. Our POMDP formulation can accommodate a variety of trust dynamics and human decision models. Here, we adopt a data-driven approach and learn these models from data.Although prior work has studied human trust elicitation and modeling [12,22,36,37], we close the loop between trust modeling and robot decision-making. The trust-POMDP enables the robot to systematically infer and influence the human collaborator's trust, and leverage trust for improved human-robot collaboration and long-term task performance.Consider again the table clearing example (Figure 2). The trust-POMDP strategy first removes the three plastic water bottles to build up trust and only attempts to remove the wine glass afterwards. In contrast, a baseline myopic strategy maximizes short-term task performance and does not account for human trust in choosing the robot actions. It first removes the wine glass, which offers the highest reward, resulting in unnecessary ...
We study the problem of recovering the 3D shape of an unknown smooth specular surface from a single image. The surface reflects a calibrated pattern onto the image plane of a calibrated camera. The pattern is such that points are available in the image where position, orientations, and local scale may be measured (e.g. checkerboard). We first explore the differential relationship between the local geometry of the surface around the point of reflection and the local geometry in the image. We then study the inverse problem and give necessary and sufficient conditions for recovering surface position and shape. We prove that surface position and shape up to third order can be derived as a function of local position, orientation and local scale measurements in the image when two orientations are available at the same point (e.g. a corner). Information equivalent to scale and orientation measurements can be also extracted from the reflection of a planar scene patch of arbitrary geometry, provided that the reflections of (at least) 3 distinctive points may be identified. We validate our theoretical results with both numerical simulations and experiments with real surfaces.
Trust is essential in shaping human interactions with one another and with robots. In this article we investigate how human trust in robot capabilities transfers across multiple tasks. We present a human-subject study of two distinct task domains: a Fetch robot performing household tasks and a virtual reality simulation of an autonomous vehicle performing driving and parking maneuvers. The findings expand our understanding of trust and provide new predictive models of trust evolution and transfer via latent task representations: a rational Bayes model, a data-driven neural network model, and a hybrid model that combines the two. Experiments show that the proposed models outperform prevailing models when predicting trust over unseen tasks and users. These results suggest that (i) task-dependent functional trust models capture human trust in robot capabilities more accurately and (ii) trust transfer across tasks can be inferred to a good degree. The latter enables trust-mediated robot decision-making for fluent human–robot interaction in multi-task settings.
Abstract-The partially observable Markov decision process (POMDP) provides a principled general model for planning under uncertainty. However, solving a general POMDP is computationally intractable in the worst case. This paper introduces POMDP-lite, a subclass of POMDPs in which the hidden state variables are constant or only change deterministically. We show that a POMDP-lite is equivalent to a set of fully observable Markov decision processes indexed by a hidden parameter and is useful for modeling a variety of interesting robotic tasks. We develop a simple model-based Bayesian reinforcement learning algorithm to solve POMDP-lite models. The algorithm performs well on large-scale POMDP-lite models with up to 10 20 states and outperforms the state-of-the-art general-purpose POMDP algorithms. We further show that the algorithm is near-Bayesian-optimal under suitable conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.