We experimentally demonstrate a micromachined switchable metamaterial with dual mode resonance which is induced at THz regime under oblique incidence. Here, we explore, both theoretically and experimentally, the dynamic dual mode switching by reshaping metamaterial elements using micromachined actuators. The mode switching allows robust control over the transmission and the reflection of the metamaterial at 0.76 THz and 1.16 THz. Such switchable dual mode metamaterial promises wide applications in optical switches, tunable filters, and THz detectors. V
A metamaterial that is embedded in an in-plane-switching dual-frequency liquid crystal cell is used to develop an electrically controllable terahertz (THz) metamaterial. The resonance peak of the metamaterial can be redshifted and blueshifted as the frequency of an external voltage is switched, and the response times for the redshift and blueshift are 1.044 and 1.376 ms, respectively. A simulation confirms the spectral redshift and blueshift. The variation in peak frequency as a function of applied frequency at the external voltage is presented. Experimental results show that the resonance peak of the metamaterial can be continuously tuned within a frequency range of 15 GHz as the applied frequency is switched between 19 and 22 kHz. Therefore, this metamaterial is a continuously tunable and fast-response THz filter and could be used for THz imaging and THz telecommunications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.