The proarrhythmic risk is a major concern in drug development. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative has proposed the JTpeak interval on electrocardiograms (ECGs) and qNet, an in silico metric, as new biomarkers that may overcome the limitations of the hERG assay and QT interval. In this study, we simulated body-surface ECGs from patch-clamp data using realistic models of the ventricles and torso to explore their suitability as new in silico biomarkers for cardiac safety. We tested seven drugs in this study: dofetilide (high proarrhythmic risk), ranolazine, verapamil (QT increasing, but safe), bepridil, cisapride, mexiletine, and diltiazem. Human ventricular geometry was reconstructed from computed tomography (CT) images, and a Purkinje fiber network was mapped onto the endocardial surface. The electrical wave propagation in the ventricles was obtained by solving a reaction-diffusion equation using finite-element methods. The body-surface ECG data were calculated using a torso model that included the ventricles. The effects of the drugs were incorporated in the model by partly blocking the appropriate ion channels. The effects of the drugs on single-cell action potential (AP) were examined first, and three-dimensional (3D) body-surface ECG simulations were performed at free Cmax values of 1×, 5×, and 10×. In the single-cell and ECG simulations at 5× Cmax, dofetilide, but not verapamil or ranolazine, caused arrhythmia. However, the non-increasing JTpeak caused by verapamil and ranolazine that has been observed in humans was not reproduced in our simulation. Our results demonstrate the potential of 3D body-surface ECG simulation as a biomarker for evaluation of the proarrhythmic risk of candidate drugs.
Background Cardiac resynchronization therapy (CRT) is an effective treatment option for patients with heart failure (HF) and left ventricular (LV) dyssynchrony. However, the problem of some patients not responding to CRT remains unresolved. This study aimed to propose a novel in silico method for CRT simulation. Methods Three-dimensional heart geometry was constructed from computed tomography images. The finite element method was used to elucidate the electric wave propagation in the heart. The electric excitation and mechanical contraction were coupled with vascular hemodynamics by the lumped parameter model. The model parameters for three-dimensional (3D) heart and vascular mechanics were estimated by matching computed variables with measured physiological parameters. CRT effects were simulated in a patient with HF and left bundle branch block (LBBB). LV end-diastolic (LVEDV) and end-systolic volumes (LVESV), LV ejection fraction (LVEF), and CRT responsiveness measured from the in silico simulation model were compared with those from clinical observation. A CRT responder was defined as absolute increase in LVEF ≥ 5% or relative increase in LVEF ≥ 15%. Results A 68-year-old female with nonischemic HF and LBBB was retrospectively included. The in silico CRT simulation modeling revealed that changes in LVEDV, LVESV, and LVEF by CRT were from 174 to 173 mL, 116 to 104 mL, and 33 to 40%, respectively. Absolute and relative ΔLVEF were 7% and 18%, respectively, signifying a CRT responder. In clinical observation, echocardiography showed that changes in LVEDV, LVESV, and LVEF by CRT were from 162 to 119 mL, 114 to 69 mL, and 29 to 42%, respectively. Absolute and relative ΔLVESV were 13% and 31%, respectively, also signifying a CRT responder. CRT responsiveness from the in silico CRT simulation model was concordant with that in the clinical observation. Conclusion This in silico CRT simulation method is a feasible technique to screen for CRT non-responders in patients with HF and LBBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.