In this paper we are concerned with modelling the reliability of a system subject to external shocks. In a run shock model, the system fails when a sequence of shocks above a threshold arrive in succession. Nevertheless, using a single threshold to measure the severity of a shock is too critical in real practice. To this end, we develop a generalized run shock model with two thresholds. We employ a phase-type distribution to model the damage size and the inter-arrival time of shocks, which is highly versatile and may be used to model many quantitative features of random phenomenon. Furthermore, we use the Markovian property to construct a multi-state system which degrades with the arrival of shocks. We also provide a numerical example to illustrate our results.
Reliability assessment of system suffering from random shocks is attracting a great deal of attention in recent years. Excluding internal factors such as aging and wear-out, external shocks which lead to sudden changes in the system operation environment are also important causes of system failure. Therefore, efficiently modeling the reliability of such system is an important applied problem. A variety of shock models are developed to model the inter-arrival time between shocks and magnitude of shocks. In a cumulative shock model, the system fails when the cumulative magnitude of damage caused by shocks exceed a threshold. Nevertheless, in the existing literatures, only the magnitude is taken into consideration, while the source of shocks is usually neglected. Using the same distribution to model the magnitude of shocks from different sources is too critical in real practice. To this end, considering a system subject to random shocks from various sources with different probabilities, we develop a generalized cumulative shock model in this article. We use phase-type distribution to model the variables, which is highly versatile to be used for modeling quantitative features of random phenomenon. We will discuss the reliability characteristics of such system in some detail and give some clear expressions under the one-dimensional case. Numerical example for illustration is also provided along with a summary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.