Microstructure is of crucial importance to the flow behavior of semi-solid slurries during the thixoforging process. Therefore, a thorough understanding of the microstructure evolution is required. In order to achieve this, high temperature confocal laser scanning microscopy (CLSM) and high energy X-ray microtomography were used to investigate the microstructure evolution of several steel grades (M2, 100Cr6 and C38LTT) during the heating process from as-received conditions to the semi-solid state. It was found that the microstructure development of M2 can be directly studied at high temperature via these two techniques. Two types of small carbides (MC and M 6 C) were present in the as-received state, while totally new interconnected carbides of specific size and composition were formed from liquid zones after cooling. It was also noted using CLSM that the diffusion rate of the alloying elements during the cooling of M2 was very low. This confirms that the volume fraction of the liquid phase of M2 at high temperature can be evaluated by threedimensional X-ray microtomography in situ at high temperature and on quenched specimens. Contrary to M2, the microstructure of the steel grades 100Cr6 and C38LTT in the semi-solid state can only be revealed by CLSM at high temperature. All these observations are discussed in terms of microstructural development and liquid fraction during heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.