Assessing the neutralization capability of nonlethal but medically relevant toxins in venom has been a challenging task. Nowadays, neutralization efficacy is evaluated based simply on the survival rates of animals injected with antivenom together with a predefined dose of venom, which can determine potency against neurotoxicity but not validate the capability to neutralize cytotoxin-induced complications. In this study, a high correlation with in-vivo and in-vitro neutralization assays was established using the immunoreactive peptides identified from short-chain neurotoxin and cytotoxin A3. These peptides contain conserved residues associated with toxin activities and a competition assay indicated that these peptides could specifically block the antibody binding to toxin and affect the neutralization potency of antivenom. Moreover, the titers of peptide-specific antibody in antivenoms or mouse antisera were determined by enzyme-linked immunosorbent assay (ELISA) simultaneously, and the results indicated that Taiwanese bivalent antivenom (BAV) and Vietnamese snake antivenom-Naja (SAV-Naja) exhibited superior neutralization potency against the lethal effect of short-chain neurotoxin (sNTX) and cytotoxicity of cardiotoxin/cytotoxin (CTX), respectively. Thus, the reported peptide ELISA shows not only its potential for antivenom prequalification use, but also its capability of justifying the cross-neutralization potency of antivenoms against Naja atra venom toxicity.
The frequencies of six platelet-specific antigens among Chinese in Taiwan are reported, which have not previously been well studied. HPA-1a (PlA1) antigen was positive in all 1100 Chinese tested. HPA-4b (Yukb) antigen was positive in all 100 persons tested. HPA-2b (Ko(a), Sib(a)) antigen was positive in 9 percent of 100 persons tested, HPA-3a (Bak(a)) in 77 percent, and NAKa in 96 percent. HPA-4a (Yuk(a)) antigen occurred in 0 percent in this study but is estimated to be present in 0.5 percent of the Taiwanese population.
Identification of the cytotoxic T lymphocyte (CTL) epitopes of tumor antigens is important for effective immunotherapy. We report that a combination of epitope prediction, enzyme-linked immunosorbent assay (ELISA)-based epitope-HLA complex formation, and DNA immunization methods can improve the efficiency and accuracy of CTL epitope studies. In this study, two HLA-A11-restricted epitopes derived from human papillomavirus (HPV)18 E6 oncoprotein were identified. HLA-A11-transgenic mice immunized with these epitopes could specifically induce interferon-gamma (IFNgamma) production, cytotoxicity and peptide/HLA-A11 tetramer binding in CD8(+) T-cells. To study intracellular processing of CTL epitopes, we constructed a DNA plasmid containing an endoplasmic reticulum (ER) targeting sequence as well as the HPV18 E6 and E7 genes (pEK/HPV18E6E7). CTL responses against peptide-pulsed T2/A11 cells could be detected after immunizing HLA-A11-transgenic mice with pEK/HPV18E6E7. Furthermore, the identified peptides could stimulate T-cells to secrete IFNgamma from HPV18-infected patients. Our results demonstrate that the antigenic E6 peptides derived from HPV18 are potential candidates for the treatment of HPV 18-associated tumors in HLA-A11(+) populations.
Highlights A novel HLA-A2 restricted phosphopeptide was identified from a tumor-associated antigen, TRAP1. The phosphopeptide is immunogenic for CTL induction to lysis the cancer cell with overexpressed TRAP1. Vaccination of novel phosphopeptide can suppress the tumor-growth rate in AAD transgenic mice.
Three-finger toxins (3FTXs) are the most clinically relevant components in cobra (genus Naja) venoms. Administration of the antivenom is the recommended treatment for the snakebite envenomings, while the efficacy to cross-neutralize the different cobra species is typically limited, which is presumably due to intra-specific variation of the 3FTXs composition in cobra venoms. Targeting the clinically relevant venom components has been considered as an important factor for novel antivenom design. Here, we used the recombinant type of long-chain α-neurotoxins (P01391), short-chain α-neurotoxins (P60770), and cardiotoxin A3 (P60301) to generate a new immunogen formulation and investigated the potency of the resulting antiserum against the venom lethality of three medially important cobras in Asia, including the Thai monocled cobra (Naja kaouthia), the Taiwan cobra (Naja atra), and the Thai spitting cobra (Naja Siamensis) snake species. With the fusion of protein disulfide isomerase and the low-temperature settings, the correct disulfide bonds were built on these recombinant 3FTXs (r3FTXs), which were confirmed by the circular dichroism spectra and tandem mass spectrometry. Immunization with r3FTX was able to induce the specific antibody response to the native 3FTXs in cobra venoms. Furthermore, the horse and rabbit antiserum raised by the r3FTX mixture is able to neutralize the venom lethality of the selected three medically important cobras. Thus, the study demonstrated that the r3FTXs are potential immunogens in the development of novel antivenom with broad neutralization activity for the therapeutic treatment of victims involving cobra snakes in countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.