Sequence-based residue contact prediction plays a crucial role in protein structure reconstruction. In recent years, the combination of evolutionary coupling analysis (ECA) and deep learning (DL) techniques has made tremendous progress for residue contact prediction, thus a comprehensive assessment of current methods based on a large-scale benchmark data set is very needed. In this study, we evaluate 18 contact predictors on 610 non-redundant proteins and 32 CASP13 targets according to a wide range of perspectives. The results show that different methods have different application scenarios: (1) DL methods based on multi-categories of inputs and large training sets are the best choices for low-contact-density proteins such as the intrinsically disordered ones and proteins with shallow multi-sequence alignments (MSAs). (2) With at least 5L (L is sequence length) effective sequences in the MSA, all the methods show the best performance, and methods that rely only on MSA as input can reach comparable achievements as methods that adopt multi-source inputs. (3) For top L/5 and L/2 predictions, DL methods can predict more hydrophobic interactions while ECA methods predict more salt bridges and disulfide bonds. (4) ECA methods can detect more secondary structure interactions, while DL methods can accurately excavate more contact patterns and prune isolated false positives. In general, multi-input DL methods with large training sets dominate current approaches with the best overall performance. Despite the great success of current DL methods must be stated the fact that there is still much room left for further improvement: (1) With shallow MSAs, the performance will be greatly affected. (2) Current methods show lower precisions for inter-domain compared with intra-domain contact predictions, as well as very high imbalances in precisions for intra-domains. (3) Strong prediction similarities between DL methods indicating more feature types and diversified models need to be developed. (4) The runtime of most methods can be further optimized.
Recently, as recognizing emotion has been one of the hallmarks of affective computing, more attention has been paid to physiological signals for emotion recognition. This paper presented an approach to emotion recognition using ElectroCardioGraphy (ECG) signals from multiple subjects. To collect reliable affective ECG data, we applied an arousal method by movie clips to make subjects experience specific emotions without external interference. Through precise location of P-QRS-T wave by continuous wavelet transform, an amount of ECG features was extracted sufficiently. Since feature selection is a combination optimization problem, Improved Binary Particle Swarm Optimization (IBPSO) based on neighborhood search was applied to search out effective features to improve classification results of emotion states with the help of fisher or K-Nearest Neighbor (KNN) classifier. In the experiment, it is shown that the approach is successful and the effective features got from ECG signals can express emotion states excellently.
Hyperspectral imaging (HSI) technology can be used to detect human emotions based on the power of material discrimination from their faces. In this paper, HSI is used to remotely sense and distinguish blood chromophores in facial tissues and acquire an evaluation indicator (tissue oxygen saturation, StO2) using an optical absorption model. This study explored facial analysis while people were showing spontaneous expressions of happiness during social interaction. Happiness, as a psychological emotion, has been shown to be strongly linked to other activities such as physiological reaction and facial expression. Moreover, facial expression as a communicative motor behavior likely arises from musculoskeletal anatomy, neuromuscular activity, and individual personality. This paper quantified the neuromotor movements of tissues surrounding some regions of interest (ROIs) on smiling happily. Next, we selected six regions—the forehead, eye, nose, cheek, mouth, and chin—according to a facial action coding system (FACS). Nineteen segments were subsequently partitioned from the above ROIs. The affective data (StO2) of 23 young adults were acquired by HSI while the participants expressed emotions (calm or happy), and these were used to compare the significant differences in the variations of StO2 between the different ROIs through repeated measures analysis of variance. Results demonstrate that happiness causes different distributions in the variations of StO2 for the above ROIs; these are explained in depth in the article. This study establishes that facial tissue oxygen saturation is a valid and reliable physiological indicator of happiness and merits further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.