Dehydration and hypersalinity challenge non-marine organisms crossing the ocean. The rate of water loss and saltwater tolerance thus determine the ability to disperse over sea and further influence species distribution. Surprisingly, this association between physiology and ecology is rarely investigated in terrestrial vertebrates. Here we conducted immersion experiments to individuals and eggs of six lizard species differently distributed across Taiwan and the adjacent islands to understand if the physiological responses reflect the geographical distribution. We found that Plestiodon elegans had the highest rate of water loss and the lowest saltwater tolerance, whereas Eutropis longicaudata and E. multifasciata showed the lowest rate of water loss and the highest saltwater tolerance. Diploderma swinhonis, Hemidactylus frenatus, and Anolis sagrei had medium measurements. For the eggs, only the rigid-shelled eggs of H. frenatus were incubated successfully after treatments. While, the parchment-shelled eggs of E. longicaudata and D. swinhonis lost or gained water dramatically in the immersions without any successful incubation. Combined with the historical geology of the islands and the origin areas of each species, the inferences of the results largely explain the current distribution of these lizards across Taiwan and the adjacent islands, pioneerly showing the association between physiological capability and species distribution.
BackgroundFor non-marine organisms, crossing the sea requires the challenges of dehydration and hypersalinity to be faced. Thus, the rate of water loss and saltwater tolerance determine the ability of species to disperse over sea and further influence species distribution. However, this association between physiology and ecology has rarely been investigated in terrestrial vertebrates. In this study, we examined the lizard species differently distributed across Taiwan and the adjacent islands to determine whether these physiological responses reflect the geographical distribution. We performed immersion experiments on individuals and eggs to test the rate of water loss and the saltwater tolerance in the six chosen species, that is, four native species (Plestiodon elegans, Eutropis longicaudata, Diploderma swinhonis, and Hemidactylus frenatus) and two introduced species (E. multifasciata and Anolis sagrei). Results For the individuals, the results showed that P. elegans had the highest rate of water loss and the lowest saltwater tolerance, whereas E. longicaudata and E. multifasciata showed the lowest rate of water loss and the highest saltwater tolerance. D. swinhonis, H. frenatus, and A. sagrei had medium measurements compared with the aforementioned species. On the other hand, for the eggs, only the rigid-shelled eggs of H. frenatus were not influenced by the water immersion and were incubated successfully after experimental treatment. In contrast, the parchment-shelled eggs of E. longicaudata and D. swinhonis lost or gained water dramatically in the experiments, and none of them hatched after immersion. ConclusionsThese interspecies differences in water loss and saltwater tolerance strongly suggest the heterogeneity of over-ocean dispersal ability among these lizards. Combined with the historical geology and the origin areas of each species, the inferences of the results largely explain the current distribution of these lizards across Taiwan and the adjacent islands. Furthermore, this study also helps to elucidate the potential dispersal of two invasive species, E. multifasciata and A. sagrei, for conservation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.