Alteration of macrophage function has an important regulatory impact on the survival of intracellular mycobacteria. We found that macrophages infected with attenuated Mycobacterium tuberculosis (Mtb) strain H37Ra had elevated expression of M1-related molecules, whereas the M2 phenotype was dominant in macrophages infected with virulent Mtb H37Rv. Further, the TLR signalling pathway played an important role in modulating macrophage polarization against Mtb infection. Interestingly, endoplasmic reticulum (ER) stress was significantly increased in M1 polarized macrophages and these macrophages effectively removed intracellular Mtb, indicating that ER stress may be an important component of the host immune response to Mtb in M1 macrophages. This improved understanding of the mechanisms that regulate macrophage polarization could provide new therapeutic strategies for tuberculosis.
Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, but its role in neuropathic pain remains unclear. In this study, we examined the ER stress and the unfolded protein response (UPR) activation in a L5 spinal nerve ligation (SNL)-induced rat neuropathic pain model. SNL-induced neuropathic pain was assessed behaviorally using the CatWalk system, and histologically with microglial activation in the dorsal spinal horn. L5 SNL induced BIP upregulation in the neuron of superficial laminae of dorsal spinal horn. It also increased the level of ATF6 and intracellular localization into the nuclei in the neurons. Moreover, spliced XBP1 was also markedly elevated in the ipsilateral spinal dorsal horn. The PERK-elF2 pathway was activated in astrocytes of the spinal dorsal horn in the SNL model. In addition, electron microscopy revealed the presence of swollen cisternae in the dorsal spinal cord after SNL. Additionally, inhibition of the ATF6 pathway by intrathecal treatment with ATF6 siRNA reduced pain behaviors and BIP expression in the dorsal horn. The results suggest that ER stress might be involved in the induction and maintenance of neuropathic pain. Furthermore, a disturbance in UPR signaling may render the spinal neurons vulnerable to peripheral nerve injury or neuropathic pain stimuli.
Tonic extrasynaptic GABAA receptor (GABAAR) activation is under the tight control of tonic GABA release from astrocytes to maintain the brain's excitation/inhibition (E/I) balance; any slight E/I balance disturbance can cause serious pathological conditions including epileptic seizures. However, the pathophysiological role of tonic GABA release from astrocytes has not been tested in epileptic seizures. Here, we report that pharmacological or genetic intervention of the GABA‐permeable Bestrophin‐1 (Best1) channel prevented the generation of tonic GABA inhibition, disinhibiting CA1 pyramidal neuronal firing and augmenting seizure susceptibility in kainic acid (KA)‐induced epileptic mice. Astrocyte‐specific Best1 over‐expression in KA‐injected Best1 knockout mice fully restored the generation of tonic GABA inhibition and effectively suppressed seizure susceptibility. We demonstrate for the first time that tonic GABA from reactive astrocytes strongly contributes to the compensatory shift of E/I balance in epileptic hippocampi, serving as a good therapeutic target against altered E/I balance in epileptic seizures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.