Enantioselective synthesis of 2, a revised structure for (-)-clavosolide B, was accomplished by a convergent approach, where syn-selective aldol, hydroxy-directed cyclopropanation, Mitsunobu inversion, Schmidt-type glycosylation, and macrolactonization reactions were utilized as key reactions. Comparison of 1H and 13C NMR spectra and optical rotation measurement confirmed the relative and absolute stereochemistry of clavosolide B (2).
A convergent and enantioselective total synthesis of (-)-amphidinolide O (1) and P (2), 15-membered macrolides with seven chiral centers along with many functional groups, is described. The key reactions include enantioselective Brown allylation, anti- and syn-selective aldol reactions, (E)-selective olefin metathesis, conformation-controlled stereoselective epoxidation, and selective introduction of the exomethylene group. Assignments of the absolute stereochemistries of the natural (+)-amphidinolide O (ent-1) and P (ent-2) are also discussed in detail.
Enantioselective total synthesis of (-)-clavosolide A and B was reported in full including the synthesis of proposed structure of (-)-clavosoldie A (1), revised structure of (-)-clavosoldie A (5), and revised structure of (-)-clavosoldie B (6). The relative and absolute stereochemistries of the natural products were confirmed unambiguously by comparing the optical rotation values and 1 H and 13 C NMR spectra of them.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Toward the Total Synthesis of Amphidinolide O: An Enantioselective Synthesis of C3-C8 Fragment. -Title fragment (X) is synthesized enantioselectively starting from L-(-)-malic acid (I) via 11 steps in 14 % overall yield. The diastereoselective Ireland-Claisen rearrangement of (VI) is used as a key step in order to implement the C4 and C5 chiral centers. -(HWANG, M.-H.; LEE*, D.-H.; Bull. Korean Chem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.