Gallic acid [3,4,5-trihydroxybenzoic acid (GA)], a natural phytochemical, is known to have a variety of cellular functions including beneficial effects on metabolic syndromes. However, the molecular mechanism by which GA exerts its beneficial effects is not known. Here we report that GA plays its role through the activation of AMP-activated protein kinase (AMPK) and by regulating mitochondrial function via the activation of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Sirtuin 1 (Sirt1) knockdown significantly blunted GA's effect on PGC1α activation and downstream genes, suggesting a critical role of the AMPK/Sirt1/PGC1α pathway in GA's action. Moreover, diet-induced obese mice treated with GA showed significantly improved glucose and insulin homeostasis. In addition, the administration of GA protected diet-induced body weight gain without a change in food intake. Biochemical analyses revealed a marked activation of AMPK in the liver, muscle, and interscapular brown adipose tissue of the GA-treated mice. Moreover, uncoupling protein 1 together with other genes related to energy expenditure was significantly elevated in the interscapular brown adipose tissue. Taken together, these results indicate that GA plays its beneficial metabolic roles by activating the AMPK/Sirt1/PGC1α pathway and by changing the interscapular brown adipose tissue genes related to thermogenesis. Our study points out that targeting the activation of the AMPK/Sirt1/PGC1α pathway by GA or its derivatives might be a potential therapeutic intervention for insulin resistance in metabolic diseases.
PurposeThe incidence of congenital hypothyroidism (CH) has increased in several countries. Lower cut-off in screening programs have led to an increase in the proportion of transient hypothyroidism (TH) cases diagnosed, leading to debate on the associated clinical and economic impact. This study aimed to identify factors that would allow discrimination between TH and permanent CH (PH) in patients with a eutopic thyroid gland.MethodsSixty-six patients with CH from 3 different hospitals were studied: 26 cases of TH, and 40 cases of PH. Laboratory findings and clinical parameters were analysed in 56 patients with eutopic thyroid gland.ResultsInitial serum thyroid stimulating hormone levels and L-thyroxine dose at 12 and 24 months of age were significantly higher in PH than TH patients with a eutopic thyroid gland. The area under the curve for the 12-month and 24-month dose for the prediction of TH in eutopic CH was 0.799 (95% confidence interval [CI], 0.678-0.919; P<0.001) and 0.925 (95% CI, 0.837-1.000; P<0.001), respectively. The optimum 12-month and 24-month dose in predicting TH is 3.25 µg/kg (12-month: sensitivity, 87.1%; specificity, 68.0%; 24-month: sensitivity 93.5%, specificity 88%).ConclusionInfants with CH requiring lower L-thyroxine doses (<3.25 µg/kg) are likely to have TH, and thus might be re-evaluated at 12 months or 24 months rather than 3 years of age.
We examined whether hypoxic exposure prior to the event of transplantation would have a positive or negative effect upon later islet graft function. Mouse islets exposed to hypoxic culture were transplanted into syngeneic recipients. Islet graft function, b-cell physiology, as well as molecular changes were examined. Expression of hypoxia-response genes in human islets pre-and posttransplant was examined by microarray. Hypoxia-preexposed murine islet grafts provided poor glycemic control in their syngeneic recipients, marked by persistent hyperglycemia and pronounced glucose intolerance with failed first-and second-phase glucose-stimulated insulin secretion in vivo. Mechanistically, hypoxic preexposure stabilized HIF-1a with a concomitant increase in hypoxic-response genes including LDHA, and a molecular gene set, which would favor glycolysis and lactate production and impair glucose sensing. Indeed, static incubation studies showed that hypoxia-exposed islets exhibited dysregulated glucose responsiveness with elevated basal insulin secretion. Isolated human islets, prior to transplantation, express a characteristic hypoxia-response gene expression signature, including high levels of LDHA, which is maintained posttransplant. Hypoxic preexposure of an islet graft drives a HIF-dependent switch to glycolysis with subsequent poor glycemic control and loss of glucose-stimulated insulin secretion (GSIS). Early intervention to reverse or prevent these hypoxia-induced metabolic gene changes may improve clinical islet transplantation.
The major histocompatibility complex region has been suggested to play an important role in the development of autoimmune thyroid disease (AITD). In this study, we investigated the associations of human leukocyte antigen (HLA) alleles and amino acid variants of HLA with early-onset AITD. HLA class I and class II genes were analyzed in 116 Korean children with AITDs (Graves’ disease [GD]: 71, Hashimoto’s disease [HD]: 45) and 142 healthy controls. HLA-B*46:01 (OR = 3.96, Pc = 0.008), -C*01:02 (OR = 2.51 Pc = 0.04), -DPB1*02:02 (OR = 3.99, Pc = 0.04), and -DPB1*05:01 (OR = 4.6, Pc = 0.003) were significantly associated with GD, and HLA-A*02:07 (OR = 4.68, Pc = 0.045) and -DPB1*02:02 (OR = 6.57, Pc = 0.0001) with HD. The frequency of HLA-DPB1*05:01 was significantly higher in GD patients than in HD patients ( Pc = 0.0005). Furthermore, differences were found between patients with Thyroid associated ophthalmopathy (TAO) and those without TAO in the distribution of HLA-B*54:01 (8.6% vs. 30.6%, P = 0.04) and -C*03:03 (37.1% vs. 11.1%, P = 0.02). In the analysis of amino acid variants of HLA molecules, both Leu35 (OR = 23.38, P = 0.0002) and Glu55 (OR = 23.38, P = 0.0002) of HLA-DPB1 were strongly associated with GD and showed different distributions between GD and HD ( P = 0.001). Our results suggest that HLA alleles, especially amino-acid signatures of the HLA-DP β chain, might contribute to the molecular pathogenesis of early-onset AITD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.