Abstract:In this paper, we present a novel signal processing method for video synthetic aperture radar (ViSAR) systems, which are suitable for operation in unmanned aerial vehicle (UAV) environments. The technique improves aspects of the system's performance, such as the frame rate and image size of the synthetic aperture radar (SAR) video. The new ViSAR system is based on a frequency-modulated continuous wave (FMCW) SAR structure that is combined with multiple-input multiple-output (MIMO) technology, and multi-channel azimuth processing techniques. FMCW technology is advantageous for use in low cost, small size, and lightweight systems, like small UAVs. MIMO technology is utilized for increasing the equivalent number of receiving channels in the azimuthal direction, and reducing aperture size. This effective increase is achieved using a co-array concept by means of beat frequency division (BFD) FMCW. A multi-channel azimuth processing technique is used for improving the frame rate and image size of SAR video, by suppressing the azimuth ambiguities in the receiving channels. This paper also provides analyses of the frame rate and image size of SAR video of ViSAR systems. The performance of the proposed system is evaluated using an exemplary system. The results of analyses are presented, and their validity is verified using numerical simulations.
A new method for suppressing surface waves on a millimetre-wave microstrip array antenna is presented. A 10 × 2 patch array antenna is designed at 77 GHz for W-band radar applications. Complementary split ring resonator (CSRR) has been designed at 77 GHz, etched on the antenna ground plane. Simulation and experimental results are compared in terms of the gain and the side lobe level with and without CSRR. CSRR between series patch antenna array could suppress surface waves effectively so that this approach enhances the gain and reduces the side lobe level. The measured gain improvement in the antenna with CSRR is 2.5 dB. The side lobe level of the antenna with CSRR is reduced up to 3.5 dB lower than antenna without CSRR.
Synthetic aperture radar (SAR) raw data simulation, operating under various scenarios, and realistic environments, are necessary for analyzing and verifying the performance aspects of SAR systems and the various algorithms used in them. In this article, we propose a method to simulate the raw data generated by multiple‐input multiple‐output video synthetic aperture radar (MIMO ViSAR) from a speckled scene, using beat frequency division (BFD) frequency‐modulated continuous wave (FMCW). Using an optical image as a reflectivity map for a realistic scene, we first multiply a speckle noise with this image to generate a speckled reflectivity map. We then compute the two‐dimensional convolutions of a SAR point spread function of a MIMO ViSAR system with the speckled reflectivity map to generate a complex SAR image. Finally, the SAR raw data is generated through inverse processing of the MIMO ViSAR system. We use the synthesized raw data to reconstruct SAR images, based on our previously proposed MIMO ViSAR signal‐processing algorithm, to demonstrate and verify the effectiveness of the proposed method.
One of the prospective research topics in radar remote sensing technology is the methodology for designing an optimal radar system for high-precision two-dimensional and three-dimensional image acquisition of the Earth’s surface with minimal hardware requirements. In this study, we propose a single-pass interferometric synthetic aperture radar (SAR) imaging technique with only a single antenna for the estimation of the terrain height. This technique enabled us to obtain terrain height information in one flight of the carrier, on which only one receiving antenna was mounted. This single-antenna single-pass interferometry required a squint angle look geometry and additional image synthesis processing. The limiting accuracy of the terrain height measurement was approximately 1.5 times lower than that of the conventional two-pass mode and required a longer baseline than two-pass interferometry to have an equivalent accuracy performance. This imaging method could overcome the temporal decorrelation problem of two-pass interferometry due to a short time gap in the radar echo acquisitions during two sub-aperture intervals. We compared the accuracy performance of the terrain height measurements of our method with the conventional two-pass interferometry. This comparison was carried out at various spectral bandwidths, degrees of surface roughness, and baseline lengths. We validated our idea with numerical simulations of a digital elevation map, and showed real extracted data of the terrain heights in the Astrakhan and Volga regions of the Russian Federation, obtained from airborne SAR with our single-antenna single-pass interferometry technique.
In recent years, the demand for small-scale remote sensing, which is used in disaster monitoring, agriculture, and ground subsidence has increased. A multichannel synthetic aperture radar (SAR) system can provide image and topographic information of the illuminated scene, regardless of adverse weather conditions. As a cost-effective solution to radar imaging, a multichannel W-band SAR system mounted on a multirotor unmanned aerial vehicle (UAV) is presented. The radar module was designed to operate at W-band to achieve small size and weight allowing the module to be mounted on multirotor UAVs with small payload. A detailed description of the design and measurement of the system is provided in this paper. The radar imaging capability of the developed system was verified by performing outdoor experiments using isolated buildings as targets. The multichannel functionality of the system was verified by measuring height of a point target placed above the ground. The measurements and experiments verified the feasibility of a multichannel radar mounted on a multirotor UAV for imaging and topographic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.