Adapting a well-established formalism in polymer physics, we develop a minimalist approach to infer three-dimensional folding of chromatin from Hi-C data. The three-dimensional chromosome structures generated from our heterogeneous loop model (HLM) are used to visualize chromosome organizations that can substantiate the measurements from fluorescence in situ hybridization, chromatin interaction analysis by paired-end tag sequencing, and RNA-seq signals. We demonstrate the utility of the HLM with several case studies. Specifically, the HLM-generated chromosome structures, which reproduce the spatial distribution of topologically associated domains from fluorescence in situ hybridization measurement, show the phase segregation between two types of topologically associated domains explicitly. We discuss the origin of cell-type-dependent gene-expression level by modeling the chromatin globules of a-globin and SOX2 gene loci for two different cell lines. We also use the HLM to discuss how the chromatin folding and gene-expression level of Pax6 loci, associated with mouse neural development, are modulated by interactions with two enhancers. Finally, HLM-generated structures of chromosome 19 of mouse embryonic stem cells, based on single-cell Hi-C data collected over each cell-cycle phase, visualize changes in chromosome conformation along the cell-cycle. Given a contact frequency map between chromatic loci supplied from Hi-C, HLM is a computationally efficient and versatile modeling tool to generate chromosome structures that can complement interpreting other experimental data.
The biological function of proteins is closely related to its structural motion. For instance, structurally misfolded proteins do not function properly. Although we are able to experimentally obtain structural information on proteins, it is still challenging to capture their dynamics, such as transition processes. Therefore, we need a simulation method to predict the transition pathways of a protein in order to understand and study large functional deformations. Here, we present a new simulation method called normal mode-guided elastic network interpolation (NGENI) that performs normal modes analysis iteratively to predict transition pathways of proteins. To be more specific, NGENI obtains displacement vectors that determine intermediate structures by interpolating the distance between two end-point conformations, similar to a morphing method called elastic network interpolation. However, the displacement vector is regarded as a linear combination of the normal mode vectors of each intermediate structure, in order to enhance the physical sense of the proposed pathways. As a result, we can generate more reasonable transition pathways geometrically and thermodynamically. By using not only all normal modes, but also in part using only the lowest normal modes, NGENI can still generate reasonable pathways for large deformations in proteins. This study shows that global protein transitions are dominated by collective motion, which means that a few lowest normal modes play an important role in this process. NGENI has considerable merit in terms of computational cost because it is possible to generate transition pathways by partial degrees of freedom, while conventional methods are not capable of this.
Adapting a well-established formalism in polymer physics, we develop a minimalist approach to infer threedimensional (3D) folding of chromatin from Hi-C data. The 3D chromosome structures generated from our heterogeneous loop model (HLM) are used to visualize chromosome organizations that can substantiate the measurements from FISH, ChIA-PET, and RNA-Seq signals. We demonstrate the utility of HLM with several case studies. Specifically, the HLM-generated chromosome structures, which reproduce the spatial distribution of topologically associated domains (TADs) from FISH measurement, show the phase segregation between two types of TADs explicitly. We discuss the origin of cell-type dependent gene expression level by modeling the chromatin globules of α-globin and SOX2 gene loci for two different cell lines. We also use HLM to discuss how the chromatin folding and gene expression level of Pax6 loci, associated with mouse neural development, is modulated by interactions with two enhancers. Finally, HLM-generated structures of chromosome 19 of mouse embryonic stem cells (mESCs), based on single-cell Hi-C data collected over each cell cycle phase, visualize changes in chromosome conformation along the cell cycle. Given a contact frequency map between chromatic loci supplied from Hi-C, HLM is a computationally efficient and versatile modeling tool to generate chromosome structures, which can complement interpreting other experimental data.
Chromosomes are giant chain molecules organized into an ensemble of three-dimensional structures characterized with its genomic state and the corresponding biological functions. Despite the strong cell-to-cell heterogeneity, the cell-type specific pattern demonstrated in high-throughput chromosome conformation capture (Hi-C) data hints at a valuable link between structure and function, which makes inference of chromatin domains (CDs) from the pattern of Hi-C a central problem in genome research. Here we present a unified method for analyzing Hi-C data to determine spatial organization of CDs over multiple genomic scales. By applying statistical physics-based clustering analysis to a polymer physics model of the chromosome, our method identifies the CDs that best represent the global pattern of correlation manifested in Hi-C. The multi-scale intra-chromosomal structures compared across different cell types uncover the principles underlying the multi-scale organization of chromatin chain: (i) Sub-TADs, TADs, and meta-TADs constitute a robust hierarchical structure. (ii) The assemblies of compartments and TAD-based domains are governed by different organizational principles. (iii) Sub-TADs are the common building blocks of chromosome architecture. Our physically principled interpretation and analysis of Hi-C not only offer an accurate and quantitative view of multi-scale chromatin organization but also help decipher its connections with genome function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.