Background Nasal septal perforation is caused by bilateral septal mucosal injuries resulting from nasal trauma and septal surgeries. Previous studies have reported that biocompatible materials may be effective for repairing nasal septal perforations. However, they were primarily used for treatment; no study has investigated their use for prevention of nasal septal perforation. Objective To determine whether porcine tracheal mucosa-derived decellularized patch can prevent the progression of nasal mucosa injuries to septal perforations. Methods Bilateral nasal septal mucosal defects were surgically induced in 36 rabbits. Silastic sheets were applied bilaterally in all rabbits, and decellularized mucosal patch was applied unilaterally (n = 12) or bilaterally (n = 12) at the defect site in the respective experimental groups. Between 1 and 8 weeks postoperatively, the animals were sacrificed, and their nasal septa were completely removed. The excised septa were examined macroscopically and microscopically (histopathological examinations). Moreover, glycosaminoglycan (GAG) estimations of the septa were performed to evaluate mucosal regeneration and mechanical properties. Results Septal perforations occurred in 5 animals in the control group (5/12; 42%), 1 in the unilateral group (1/12; 9%), and in none in the bilateral group. Compared with the control group, the experimental groups showed significantly different mucosal and cartilage regeneration. Conclusion Decellularized porcine tracheal mucosa can prevent mucosal defects from progressing to septal perforation, promote the repair of mucosal defects, and protect the nasal cartilage.
Hypoparathyroidism is an endocrine disorder that occurs because of the inability to produce parathyroid hormone (PTH) effectively. Previously, we reported the efficacy of tonsil-derived mesenchymal stem cells (TMSCs) differentiated into parathyroid-like cells for the treatment of hypoparathyroidism. Here, we investigated the feasibility of three-dimensional structural microbeads fabricated with TMSCs and alginate, a natural biodegradable polymer, to treat hypoparathyroidism. Alginate microbeads were fabricated by dropping a 2% (w/v) alginate solution containing TMSCs into a 5% CaCl2 solution and then differentiated into parathyroid-like cells using activin A and sonic hedgehog for 7 days. The protein expression of PTH, a specific marker of the parathyroid gland, was significantly higher in differentiated alginate microbeads with TMSCs (Al-dT) compared with in undifferentiated alginate microbeads with TMSCs. For in vivo experiments, we created the hypoparathyroidism animal model by parathyroidectomy (PTX) and implanted alginate microbeads in the dorsal interscapular region. The PTX rats with Al-dT (PTX+Al-dT) showed the highest survival rate and weight change and a gradual increase in serum intact PTH levels. We also detected a higher expression of PTH in retrieved tissues of PTX+Al-dT using immunofluorescence analysis. This study demonstrates that alginate microbeads are potential a new tool as a surgically scalable therapy for treating hypoparathyroidism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.