One of the most important factors in training object recognition networks using convolutional neural networks (CNNs) is the provision of annotated data accompanying human judgment. Particularly, in object detection or semantic segmentation, the annotation process requires considerable human effort. In this paper, we propose a semi-supervised learning (SSL)-based training methodology for object detection, which makes use of automatic labeling of un-annotated data by applying a network previously trained from an annotated dataset. Because an inferred label by the trained network is dependent on the learned parameters, it is often meaningless for re-training the network. To transfer a valuable inferred label to the unlabeled data, we propose a re-alignment method based on co-occurrence matrix analysis that takes into account one-hot-vector encoding of the estimated label and the correlation between the objects in the image. We used an MS-COCO detection dataset to verify the performance of the proposed SSL method and deformable neural networks (D-ConvNets) [1] as an object detector for basic training. The performance of the existing state-of-the-art detectors YOLO v2 [2], and single shot multi-box detector (SSD) [3]) can be improved by the proposed SSL method without using the additional model parameter or modifying the network architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.