Pedestrian-vehicle crashes can result in serious injury to pedestrians, who are exposed to danger when in close proximity to moving vehicles. Furthermore, these injuries can be considerably serious and even lead to death in a manner that varies depending on the pedestrian’s age. This is because the pedestrian’s physical characteristics and behaviors, particularly in relation to roads with moving vehicles, differ depending on the pedestrian’s age. This study examines the determinants of pedestrian injury severity by pedestrian age using binary logistic regression. Factors in the built environment, such as road characteristics and land use of the places where pedestrian crashes occurred, were considered, as were the accident characteristics of the pedestrians and drivers. The analysis determined that the accident characteristics of drivers and pedestrians are more influential in pedestrian-vehicle crashes than the factors of the built environmental characteristics. However, there are substantial differences in injury severity relative to the pedestrian’s age. Young pedestrians (aged under 20 years old) are more likely to suffer serious injury in school zones; however, no association between silver zones and injury severity is found for elderly pedestrians. For people in the age range of 20–39 years old, the severity of pedestrian injuries is lower in areas with more crosswalks and speed cameras. People in the age range of 40–64 years old are more likely to be injured in areas with more neighborhood streets and industrial land use. Elderly pedestrians are likely to suffer fatal injuries in areas with more traffic signals. This study finds that there are differences in the factors of pedestrian injury severity according to the age of pedestrians. Therefore, it is suggested that concrete and efficient policies related to pedestrian age are required to improve pedestrian safety and reduce pedestrian-vehicle crashes.
This study aimed to determine how built environments affect pedestrian–vehicle collisions. The study examined pedestrian–vehicular crashes that occurred between 2013 and 2015 in Seoul, Korea, by comparing and analyzing different effects of the built environment on pedestrian–vehicle crashes. Specifically, the study analyzed built environment attributes, land use environment, housing types, road environment, and traffic characteristics to determine how these factors affect the severity of pedestrian injury. The results of the statistical analysis appear to infer that the built environment attributes had dissimilar impacts on pedestrian collisions, depending on the injury severity. In general, both incapacitating and non-incapacitating injuries appear to be more likely to be caused by the built environment than fatal and possible injuries. These results highlight the need to consider injury severity when implementing more effective interventions and strategies for ensuring pedestrian safety. However, because of the small sample size, an expanded research project regarding this issue should be considered, as it would contribute to the development and implementation of effective policies and interventions for pedestrian safety in Korea. This study therefore offers practical information regarding the development of such an expanded study to inform future traffic safety policies in Seoul to establish a “safe walking city.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.