Polymeric micelles are extensively used for the delivery of hydrophobic drugs, which, however, suffer from unsatisfactory drug loading, colloidal uniformity, formulation stability, and drug release. Herein, we demonstrate a convenient strategy to prepare micelles with ultrahigh drug loading via the incorporation of polymer-drug coordination interactions. An amphiphilic copolymer containing pendant phenylboronic acid as electron acceptor unit was synthesized, which afforded donor-acceptor coordination with doxorubicin to obtain micelles with ultrahigh drug loading (∼50%), nearly quantitative loading efficiency (>95%), uniform size, and colloidal stability. Besides, the encapsulated drug can be effectively and selectively released in response to the high reactive oxygen species levels in cancer cells, which potentiated the anticancer efficacy and reduced systemic toxicity. Apart from doxorubicin, the current platform could be extended to other drugs with electron-donating groups (e.g., epirubicin and irinotecan), rendering a simple and robust strategy for enabling high drug loading in polymeric micelles and cancer-specific drug release.
Photo-degradable, branched poly(β-amino ester)s (BPAE-NB) were developed to mediate topology-assisted trans-membrane gene delivery as well as photo-strengthened intracellular gene release.
Myocardial ischemia reperfusion (IR) injury is closely related to the overwhelming inflammation in the myocardium. Herein, cardiomyocyte-targeted nanotherapeutics were developed for the reactive oxygen species (ROS)-ultrasensitive co-delivery of dexamethasone (Dex) and RAGE small interfering RNA (siRAGE) to attenuate myocardial inflammation. PPTP, a ROS-degradable polycation based on PGE
2
-modified, PEGylated, ditellurium-crosslinked polyethylenimine (PEI) was developed to surface-decorate the Dex-encapsulated mesoporous silica nanoparticles (MSNs), which simultaneously condensed siRAGE and gated the MSNs to prevent the Dex pre-leakage. Upon intravenous injection to IR-injured rats, the nanotherapeutics could be efficiently transported into the inflamed cardiomyocytes via PGE
2
-assisted recognition of over-expressed E-series of prostaglandin (EP) receptors on the cell membranes. Intracellularly, the over-produced ROS degraded PPTP into small segments, promoting the release of siRAGE and Dex to mediate effective RAGE silencing (72%) and cooperative antiinflammatory effect. As a consequence, the nanotherapeutics notably suppressed the myocardial fibrosis and apoptosis, ultimately recovering the systolic function. Therefore, the current nanotherapeutics represent an effective example for the co-delivery and on-demand release of nucleic acid and chemodrug payloads, and might find promising utilities toward the synergistic management of myocardial inflammation.
Electronic Supplementary Material
Supplementary material (experimental methods, RNA and primer sequences,
1
H NMR spectra, FTIR spectrum, TEM images, zeta potential, drug loading content, RNA and drug release, cytotoxicity, etc.) is available in the online version of this article at 10.1007/s12274-022-4553-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.