Background: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to human health. T cells play a critical role in antiviral immunity but their numbers and functional state in COVID-19 patients remain largely unclear. Methods: We retrospectively reviewed the counts of T cells and serum cytokine concentration from data of 522 patients with laboratory-confirmed COVID-19 and 40 healthy controls. In addition, the expression of T cell exhaustion markers were measured in 14 COVID-19 cases. Results: The number of total T cells, CD4 + and CD8 + T cells were dramatically reduced in COVID-19 patients, especially in patients requiring Intensive Care Unit (ICU) care. Counts of total T cells, CD8 + T cells or CD4 + T cells lower than 800, 300, or 400/µL, respectively, were negatively correlated with patient survival. T cell numbers were negatively correlated to serum IL-6, IL-10, and TNF-α concentration, with patients in the disease resolution period showing reduced IL-6, IL-10, and TNF-α concentrations and restored T cell counts. T cells from COVID-19 patients had significantly higher levels of the exhausted marker PD-1. Increasing PD-1 and Tim-3 expression on T cells was seen as patients progressed from prodromal to overtly symptomatic stages. Conclusions: T cell counts are reduced significantly in COVID-19 patients, and the surviving T cells appear functionally exhausted. Non-ICU patients with total T cells counts lower than 800/µL may still require urgent intervention, even in the immediate absence of more severe symptoms due to a high risk for further deterioration in condition.
Group I metabotropic glutamate receptors (mGluRs) activate PI turnover and thereby trigger intracellular calcium release. Previously, we demonstrated that mGluRs form natural complexes with members of a family of Homer-related synaptic proteins. Here, we present evidence that Homer proteins form a physical tether linking mGluRs with the inositol trisphosphate receptors (IP3R). A novel proline-rich "Homer ligand" (PPXXFr) is identified in group 1 mGluRs and IP3R, and these receptors coimmunoprecipitate as a complex with Homer from brain. Expression of the IEG form of Homer, which lacks the ability to cross-link, modulates mGluR-induced intracellular calcium release. These studies identify a novel mechanism in calcium signaling and provide evidence that an IEG, whose expression is driven by synaptic activity, can directly modify a specific synaptic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.