BackgroundHospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR) and validated by Artificial Neural Networks (ANN) simultaneously.Methodology/Principal FindingsA total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR) and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507) to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447). The scoring system also performed extremely well in the internal (AUC: 0.965) and external (AUC: 0.871) validations.ConclusionsWe developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction outcome that can be utilized in different clinical settings.
explain the higher incidence of GPLA in individuals with diabetes mellitus. 7 Gas-forming PLA is a significant cause of morbidity and mortality, especially in older adults with diabetes mellitus. To reduce morbidity and mortality, adequate antibiotics, such as ceftriaxone with or without metronidazole, and good control of blood glucose with early adequate drainage are mandatory. Surgery should not be delayed if medical treatment or percutaneous drainage fails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.