Lipase was covalently bound onto Fe(3)O(4) magnetic nanoparticles (12.7 nm) via carbodiimide activation. The Fe(3)O(4) magnetic nanoparticles were prepared by coprecipitating Fe(2+) and Fe(3+) ions in an ammonia solution and treating under hydrothermal conditions. The analyses of transmission electron microscopy (TEM) and X-ray diffraction (XRD) showed that the size and structure of magnetic nanoparticles had no significant changes after enzyme binding. Magnetic measurement revealed the resultant lipase-bound magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu/g (only slightly lower than that of the naked ones (64 emu/g)), a remanent magnetization of 1.0 emu/g, and a coercivity of 7.5 Oe. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of lipase onto magnetic nanoparticles. The binding efficiency of lipase was 100% when the weight ratio of lipase bound to Fe(3)O(4) nanoparticles was below 0.033. Compared to the free enzyme, the bound lipase exhibited a 1.41-fold enhanced activity, a 31-fold improved stability, and better tolerance to the variation of solution pH. For the hydrolysis of pNPP by bound lipase at pH 8, the activation energy within 20-35 degrees C was 6.4 kJ/mol, and the maximum specific activity and Michaelis constant at 25 degrees C were 1.07 micromol/min mg and 0.4 mM, respectively. It revealed that the available active sites of lipase and their affinity to substrate increased after being bound onto magnetic nanoparticles.
The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+, leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low‐dimensional perovskite layer on the surface of the FASnI3 (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]‐phenyl‐C61‐butyricacid methyl) in the inverted planar device structure of the ITO (indium‐doped tin oxide)/PEDOT:PSS [poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]‐phenyl‐C61‐butyricacid methyl (PCBM)/BCP (2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI3 perovskite by incorporating Br and forming an ultrathin, low‐dimensional perovskite layer at the interface, which led to the effective suppression of Sn2+ oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn2+ and paves a new way to fabricate promising tin halide PSCs by facile interface engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.