In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the MimlBoost and MimlSvm algorithms based on a simple degeneration strategy, and experiments show that solving problems involving complicated objects with multiple semantic meanings in the MIML framework can lead to good performance. Considering that the degeneration process may lose information, we propose the D-MimlSvm algorithm which tackles MIML problems directly in a regularization framework. Moreover, we show that even when we do not have access to the real objects and thus cannot capture more information from real objects by using the MIML representation, MIML is still useful. We propose the InsDif and SubCod algorithms. InsDif works by transforming single-instances into the MIML representation for learning, while SubCod works by transforming single-label examples into the MIML representation for learning. Experiments show that in some tasks they are able to achieve better performance than learning the single-instances or single-label examples directly.
Multi-label learning deals with the problem where each training example is represented by a single instance while associated with a set of class labels. For an unseen example, existing approaches choose to determine the membership of each possible class label to it based on identical feature set, i.e. the very instance representation of the unseen example is employed in the discrimination processes of all labels. However, this commonly-used strategy might be suboptimal as different class labels usually carry specific characteristics of their own, and it could be beneficial to exploit different feature sets for the discrimination of different labels. Based on the above reflection, we propose a new strategy to multi-label learning by leveraging labelspecific features, where a simple yet effective algorithm named LIFT is presented. Briefly, LIFT constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Extensive experiments across sixteen diversified data sets clearly validate the superiority of LIFT against other wellestablished multi-label learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.