The rational design of effective catalysts for sluggish oxygen evolution reactions (OERs) is desired but challenging. Nickel-iron (NiFe) (oxy) hydroxides are promising pre-electrocatalysts for alkaline OER. However, OER performances are limited by the slow reconstruction process to generate active species of high-valance NiFe oxyhydroxides. In this work, a sulfate ion (SO 4 2− ) modulated strategy is developed to boost the OER activity of NiFe (oxy)hydroxide by accelerating the electrochemical reconstruction of pre-catalyst and stabilizing the reaction intermediate of OOH* during OER. The SO 4 2− decorated NiFe (oxy)hydroxide catalyst (NF-S0.15) is fabricated via scalable anodization of NiFe foam in a thiourea-dissolved electrolyte. The experimental and theoretical investigations demonstrate the dual effect of SO 4 2− on improving OER performances. SO 4 2− leaching is favorable for the electrochemical reconstruction to form active NiFeOOH under OER condition. Simultaneously, the residual SO 4 2− adsorbed on surface can stabilize the intermediate of OOH*, and thus enhance the OER performances. As expected, NF-S0.15 delivers an ultralow overpotential of 234 mV to reach the current density of 50 mA cm −2 , a fast OER kinetics (27.7 mV dec −1 ), and a high stability for more than 100 h. This unique insights into anionic modification could inspire the development of advanced electrocatalysts for efficient OER.
Electrochemical nitrogen reduction reaction (NRR) is a promising route to produce ammonia under mild conditions. Single-atom W supported on BP was screened as a promising electrocatalyst with high catalytic activity, stability, and selectively for NRR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.