Automated segmentation and tracking of cells in actively developing tissues can provide high-throughput and quantitative spatiotemporal measurements of a range of cell behaviors; cell expansion and cell-division kinetics leading to a better understanding of the underlying dynamics of morphogenesis. Here, we have studied the problem of constructing cell lineages in time-lapse volumetric image stacks obtained using Confocal Laser Scanning Microscopy (CLSM). The novel contribution of the work lies in its ability to segment and track cells in densely packed tissue, the shoot apical meristem (SAM), through the use of a close-loop, adaptive segmentation, and tracking approach. The tracking output acts as an indicator of the quality of segmentation and, in turn, the segmentation can be improved to obtain better tracking results. We construct an optimization function that minimizes the segmentation error, which is, in turn, estimated from the tracking results. This adaptive approach significantly improves both tracking and segmentation when compared to an open loop framework in which segmentation and tracking modules operate separately.
Plant invasions are a major component of global change, but they may be affected by other global change components. Here we used a mesocosm-pot experiment to test whether high water availability, nitrogen (N) enrichment and their interaction promote performance of three invasive alien plants (Lepidium virginicum, Lolium perenne and Medicago sativa) when competing with a native Chinese grassland species (Agropyron cristatum). Single plants of the three invasive and the one native species were grown in the center of pots with a matrix of the native A. cristatum under low, intermediate or high water availability and low or high N availability. The invasive species L. virginicum and M. sativa grew larger, and produced a higher biomass relative to competitors than the native species A. cristatum did. Increasing water availability promoted biomass production of all species, but water availability did not change the biomass of the central plants relative to that of the competitors. Nitrogen addition also increased biomass production of all species, and it increased the biomass of the central plants more so than that of the competitors. The positive effect of N addition on the biomass of the central plants relative to that of the competitors increased with increasing water availability. However, compared to central plants of the native species, the positive effect of N addition on the relative biomass of L. virginicum decreased when water availability increased. These interactions indicate that future changes in water availability and N enrichment may affect the invasion success of different alien species differently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.