We performed a genome-wide association study of esophageal squamous cell carcinoma (ESCC) by genotyping 1,077 individuals with ESCC and 1,733 control subjects of Chinese Han descent. We selected 18 promising SNPs for replication in an additional 7,673 cases of ESCC and 11,013 control subjects of Chinese Han descent and 303 cases of ESCC and 537 control subjects of Chinese Uygur-Kazakh descent. We identified two previously unknown susceptibility loci for ESCC: PLCE1 at 10q23 (P(Han combined for ESCC) = 7.46 x 10(-56), odds ratio (OR) = 1.43; P(Uygur-Kazakh for ESCC) = 5.70 x 10(-4), OR = 1.53) and C20orf54 at 20p13 (P(Han combined for ESCC) = 1.21 x 10(-11), OR = 0.86; P(Uygur-Kazakh for ESCC) = 7.88 x 10(-3), OR = 0.66). We also confirmed association in 2,766 cases of gastric cardia adenocarcinoma cases and the same 11,013 control subjects (PLCE1, P(Han for GCA) = 1.74 x 10(-39), OR = 1.55 and C20orf54, P(Han for GCA) = 3.02 x 10(-3), OR = 0.91). PLCE1 and C20orf54 have important biological implications for both ESCC and GCA. PLCE1 might regulate cell growth, differentiation, apoptosis and angiogenesis. C20orf54 is responsible for transporting riboflavin, and deficiency of riboflavin has been documented as a risk factor for ESCC and GCA.
Docosahexaenoic acid (DHA) production in Schizochytrium sp. HX-308 was evaluated by detecting enzymatic activities of ATP:citrate lyase (EC 4.1.3.8), malic enzyme (EC 1.1.1.40) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) at different fermentation stages. According to the analysis, a regulation strategy was proposed which reinforced acetyl-CoA and NADPH supply at a specific fermentation stage. DHA content of total fatty acids was increased from 35 to 60% by the addition of 4 g/L malic acid at the rapid lipid accumulation stage. Total lipid content also showed an apparent increase of 35% and reached 19 g/L when 40 mL ethanol/L was added at the late lipid accumulation stage.
Dairy goats are one of the most utilized domesticated animals in China. Here, we selected extreme populations based on differential fecundity in two Laoshan dairy goat populations. Utilizing deep sequencing we have generated 68.7 and 57.8 giga base of sequencing data, and identified 12,458,711 and 12,423,128 SNPs in the low fecundity and high fecundity groups, respectively. Following selective sweep analyses, a number of loci and candidate genes in the two populations were scanned independently. The reproduction related genes CCNB2, AR, ADCY1, DNMT3B, SMAD2, AMHR2, ERBB2, FGFR1, MAP3K12 and THEM4 were specifically selected in the high fecundity group whereas KDM6A, TENM1, SWI5 and CYM were specifically selected in the low fecundity group. A sub-set of genes including SYCP2, SOX5 and POU3F4 were localized both in the high and low fecundity selection windows, suggesting that these particular genes experienced strong selection with lower genetic diversity. From the genome data, the rare nonsense mutations may not contribute to fecundity, whereas nonsynonymous SNPs likely play a predominant role. The nonsynonymous exonic SNPs in SETDB2 and CDH26 which were co-localized in the selected region may take part in fecundity traits. These observations bring us a new insights into the genetic variation influencing fecundity traits within dairy goats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.