While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.
Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4 -/-bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4 -/-BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity.
Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4). Our study demonstrates that ATF4 deficiency suppresses PTH-stimulated osteoblast proliferation and survival and abolishes PTH-induced osteoblast differentiation, which, together, compromise the anabolic response. We further demonstrate that the PTH-dependent increase in osteoblast differentiation is correlated with ATF4-dependent up-regulation of Osterix. This regulation involves interactions of ATF4 with a specific enhancer sequence in the Osterix promoter. Furthermore, actions of PTH on Osterix require this same element and are associated with increased binding of ATF4 to chromatin. Taken together these experiments establish a fundamental role for ATF4 in the anabolic actions of PTH on the skeleton.
The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced in the embryonic pituitary in response to delivery of the hypothalamic gonadotropin releasing hormone (GnRH). GnRH has a pivotal role in reestablishing gonadotropin levels at puberty in primates, and for many species with extended reproductive cycles, these are reinitiated in response to central nervous system-induced GnRH release. Thus, a clear role is evident for GnRH in overcoming repression of these genes. Although the mechanisms through which GnRH actively stimulates LH and FSH -subunit (FSH) gene transcription have been described in some detail, there is currently no information on how GnRH overcomes repression in order to terminate reproductively inactive stages. We show here that GnRH overcomes histone deacetylase (HDAC)-mediated repression of the gonadotropin -subunit genes in immature gonadotropes. The repressive factors associated with each of these genes comprise distinct sets of HDACs and corepressors which allow for differentially regulated derepression of these two genes, produced in the same cell by the same regulatory hormone. We find that GnRH activation of calcium/calmodulin-dependent protein kinase I (CaMKI) plays a crucial role in the derepression of the FSH gene involving phosphorylation of several class IIa HDACs associated with both the FSH and Nur77 genes, and we propose a model for the mechanisms involved. In contrast, derepression of the LH -subunit gene is not CaMK dependent. This demonstration of HDACmediated repression of these genes could explain the temporal shut-down of reproductive function at certain periods of the life cycle, which can easily be reversed by the actions of the hypothalamic regulatory hormone.In the mouse embryo, the pituitary gonadotropes become fully differentiated between embryonic day (E)11.5 when the common ␣-subunit is first expressed, and E16.5 when the luteinizing hormone -subunit (LH) gene is first detected, while expression of the follicle-stimulating hormone -subunit (FSH) gene appears on the following day. The expression of these genes is facilitated by unique cell-specific groups of transcription factors which are expressed in response to local signals, and most are present by E9 to 13.5 (6, 23, 50). Expression of these transcription factors (e.g., SF-1, Egr-1, and Pitx-1 for LH and SF-1, AP-1, Lhx3, Ptx1, and Ptx2 for FSH) has been shown to be sufficient to induce activity of the transiently transfected LH and FSH promoters in reporter gene assays in heterologous cells (9,20,27,41,55,56,61,67). However, LH and FSH gene expression in the developing gonadotrope appears only following the migration of the gonadotropin releasing hormone (GnRH) neurons in the hypothalamus and GnRH delivery to the pituitary, which starts around E16. This indicates a role for GnRH in initiating gonadotropin gene expression, which might be distinct from its stimulating increases in gonadotropin gene expression in mature gonadotropes, in which the gonadotropin genes ...
PTH is an important peptide hormone regulator of calcium homeostasis and osteoblast function. However, its mechanism of action in osteoblasts is poorly understood. Our previous study demonstrated that PTH activates mouse osteocalcin (Ocn) gene 2 promoter through the osteoblast-specific element 1 site, a recently identified activating transcription factor-4 (ATF4) -binding element. In the present study, we examined effects of PTH on ATF4 expression and activity as well as the requirement for ATF4 in the regulation of Ocn by PTH. Results show that PTH elevated levels of ATF4 mRNA and protein in a dose- and time-dependent manner. This PTH regulation requires transcriptional activity but not de novo protein synthesis. PTH also increased binding of nuclear extracts to osteoblast-specific element 1 DNA. PTH stimulated ATF4-dependent transcriptional activity mainly through protein kinase A with a lesser requirement for protein kinase C and MAPK/ERK pathways. Lastly, PTH stimulation of Ocn expression was lost by small interfering RNA down-regulation of ATF4 in MC-4 cells and Atf4(-/-) bone marrow stromal cells. Collectively, these studies for the first time demonstrate that PTH increases ATF4 expression and activity and that ATF4 is required for PTH induction of Ocn expression in osteoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.