Sequence-dependent interactions between DNA and single-wall carbon nanotubes (SWCNTs) are shown to provide resolution for the atomic-structure-based sorting of DNA-wrapped SWCNTs. Previous studies have demonstrated that aqueous two-phase (ATP) systems are very effective for sorting DNA-wrapped SWCNTs (DNA-SWCNTs). However, most separations have been carried out with a polyethylene glycol (PEG)/polyacrylamide (PAM) ATP system, which shows severe interfacial trapping for many DNA-SWCNT dispersions, resulting in significant material loss and limiting multistage extraction. Here, we report a study of several new ATP systems for sorting DNA-SWCNTs. We have developed a convenient method to explore these systems without knowledge of the corresponding phase diagram. We further show that the molecular weight of the polymer strongly affects the partition behavior and separation results for DNA-SWCNTs in PEG/dextran (DX) ATP systems. This leads to the identification of the PEG1.5kDa/DX250kDa ATP system as an effective vehicle for the chirality separation of DNA-SWCNTs. Additionally, this ATP system exhibits greatly reduced interfacial trapping, enabling for the first time continuous multistep sorting of four species of SWCNTs from a single dispersion. Enhanced stability of DNA-SWCNTs in the PEG1.5kDa/ DX250kDa ATP system also allows us to investigate pH dependent sorting of SWCNTs wrapped by C-rich sequences. Our observations suggest that hydrogen bonding may form between the DNA bases at lower pH, enabling a more ordered wrapping structure on the SWCNTs and improvement in sorting (11,0). Together, these findings reveal that the new ATP system is suitable for searching DNA sequences leading toward more complete resolution of DNA-SWCNTs. A new concept of "resolving sequences", evolved from the old notion of "recognition sequences", is proposed to describe a broader range of behaviors of DNA/SWCNT interactions and sorting.
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a diameter of around 1.0–1.5 nm, which present bandgaps comparable to silicon, are highly desired for electronic applications. Therefore, the preparation of s-SWCNTs of such diameters has been attracting great attention. The inner surface of SWCNTs has a suitable curvature and large contacting area, which is attractive in host–guest chemistry triggered by electron transfer. Here we reported a strategy of host–guest molecular interaction between SWCNTs and inner clusters with designed size, thus selectively separating s-SWCNTs of expected diameters. When polyoxometalate clusters of ∼1 nm in size were filled in the inner cavities of SWCNTs, s-SWCNTs with diameters concentrated at ∼1.3–1.4 nm were selectively extracted with the purity of ∼98% by a commercially available polyfluorene derivative. The field-effect transistors built from the sorted s-SWCNTs showed a typical behavior of semiconductors. The sorting mechanisms associated with size-dependent electron transfer from nanotubes to inner polyoxometalate were revealed by the spectroscopic and in situ electron microscopic evidence as well as the theoretical calculation. The polyoxometalates with designable size and redox property enable the flexible regulation of interaction between the nanotubes and the clusters, thus tuning the diameter of sorted s-SWCNTs. The present sorting strategy is simple and should be generally feasible in other SWCNT sorting techniques, bringing both great easiness in dispersant design and improved selectivity.
In this work, a convenient method to enhance the photoluminescence (PL) of single-walled carbon nanotubes (SWNTs) in aqueous solutions is provided. Dispersing by single-stranded DNA (ssDNA) and modifying with gold nanoparticles (AuNPs), about tenfold PL enhancement of the SWNTs is observed. More importantly, the selective PL enhancement is achieved for some particular chiralities of interest over all other chiralities, by using certain specific ssDNA sequences that are reported to recognize these particular chiralities. By forming AuNP-DNA-SWNT nanohybrids, ssDNA serves as superior molecular spacers that on one hand protect SWNT from direct contacting with AuNP and causing PL quench, and on the other hand attract the AuNP in close proximity to the SWNT to enhance its PL. This PL enhancement method can be utilized for the PL analysis of SWNTs in aqueous solutions, for biomedical imaging, and may serve as a prescreening method for the recognition and separation of single chirality SWNTs by ssDNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.