Killing of virally infected cells or tumor cells by cytotoxic T lymphocytes requires targeting of lytic granules to the junction between the CTL and its target. We used whole-cell patch clamp to measure the cell capacitance at fixed intracellular [Ca2+] to study fusion of lytic granules in human CTLs. Expression of a fluorescently labeled human granzyme B construct allowed identification of lytic granule fusion using total internal reflection fluorescence microscopy. In this way capacitance steps due to lytic granule fusion were identified. Our goal was to determine the size of fusing lytic granules and to describe their behavior at the plasma membrane. On average, 5.02 ± 3.09 (mean ± s.d.) lytic granules were released per CTL. The amplitude of lytic granule fusion events was ~ 3.3 fF consistent with a diameter of about 325 nm. Fusion latency was biphasic with time constants of 15.9 and 106 seconds. The dwell time of fusing lytic granules was exponentially distributed with a mean dwell time of 28.5 seconds. Fusion ended in spite of the continued presence of granules at the immune synapse. The mobility of fusing granules at the membrane was indistinguishable from that of lytic granules which failed to fuse. While dwelling at the plasma membrane lytic granules exhibit mobility consistent with docking interspersed with short periods of greater mobility. The failure of lytic granules to fuse when visible in TIRF at the membrane may indicate that a membrane-confined reaction is rate limiting.
Cytotoxic T lymphocytes (CTLs) form an integral part of the adaptive immune system. Their main function is to eliminate bacteria- and virus-infected target cells by releasing perforin and granzymes (the lethal hit) contained within lytic granules (LGs), at the CTL-target-cell interface [the immunological synapse (IS)]. The formation of the IS as well as the final events at the IS leading to target-cell death are both highly complex and dynamic processes. In this review we highlight and discuss three high-resolution techniques that have proven invaluable in the effort to decipher key features of the mechanism of CTL effector function and in particular lytic granule maturation and fusion. Correlative light and electron microscopy allows the correlation between organelle morphology and localization of particular proteins, while total internal reflection fluorescence microscopy (TIRFM) enables the study of lytic granule dynamics at the IS in real time. The combination of TIRFM with patch-clamp membrane capacitance measurements finally provides a tool to quantify the size of fusing LGs at the IS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.