This article investigates the influence of low damping ratios on the performance of the multi-exciter stationary non-Gaussian random vibration control system. The basic theory of the multi-exciter stationary non-Gaussian random vibration method is reviewed first, and then the influences of low damping ratios on multi-output spectra and kurtoses are analyzed. The low damping ratios cause an ill-conditioned problem which will make the drive spectral matrix solution inaccurate; thus, some spectral lines located at resonance peaks in the response spectra cannot be modified within the preset tolerances by the control algorithms. The regularization method is used to alleviate the calculation error. The output kurtoses are dependent not only on the characteristics of the system but also on the input signals. It is found that the kurtosis control will be intractable if the damping ratios are very low. A two-input two-output cantilever beam simulation example is described to illustrate the analysis results.
A new parameter identification method under non-white noise excitation using transformer encoder and long short-term memory networks (LSTMs) is proposed in the paper. In this work, the random decrement technique (RDT) processing of the data is equivalent to eliminating the noise of the raw data. In general, the addition of the gate in LSTM allows the network to selectively store data, which avoids gradient disappearance and gradient explosion to a certain extent. It is worthwhile mentioning that the encoder can learn the essence of data, which reduces the burden for the LSTM. More specifically, establish as simple LSTM structure as possible to learn the data of this essence to achieve the best training effect. Finally, the proposed method is used for simulation and experimental verification, and the results show that the method has the advantages of high recognition accuracy, strong anti-noise ability, and fast convergence rate. Specially, the results indicated appropriate accuracy proposed by deep learning combined with traditional method for parameter identification as well as proper performance of the proposed method.
To adaptively identify the modal parameters for time-invariant structures excited by non-white noise, this paper proposes a new operational modal analysis (OMA) method using hybrid neural networks. In this work, taking the acceleration response directly as the input data of the networks not only simplifies the data processing, but also retains all the characteristics of the data. The data processed by the output function is the output data of the network, and its peak corresponds to the modal frequency. The proposed output function greatly reduces the computational cost. In addition, a small sample dataset ensures that the hybrid neural networks identify the modal parameters with the highest accuracy in the shortest possible time. Interestingly, the hybrid neural networks combine the advantages of the convolutional neural network (CNN) and gate recurrent unit (GRU). To illustrate the advantages of the proposed method, the cantilever beam and the rudder surface excited by white and non-white noise are taken as examples for experimental verification. The results reveal that the proposed method has a strong anti-noise ability and high recognition accuracy, and is not limited by ambient excitation type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.