Pentafluorophenyl (PFP) ester-functionalized poly(phenylacetylene)s (PPAs, P1, P2, and P3) were designed and synthesized in desirable yields and molecular weight by using organorhodium complexes as catalysts. Furthermore, these PFP-containing PPAs were used as precursors to prepare a series of mono- and dual-functionalized PPAs by the substitution of the activated ester moieties with functional amines. The structures of the PFP-containing PPAs and the derived functional PPAs were characterized by using multiple spectroscopic techniques including GPC, FTIR, 1H NMR, 13C NMR, and 19F NMR. The experimental details and the characterization data demonstrate that activated ester synthetic route to functional PPAs is facile (just stirring the precursor polymer with proper amine(s) at room temperature for hours), efficient (complete transition from ester to amide has been confirmed), and quantitative (the relative content of a specific functionality can be precisely preset by controlling the feed ratio of the functional amines). By reacting three PFP-containing PPAs with chiral amines or with chiral and nonchiral alkyl amines in a step-by-step way, a series of seven different PPAs with asymmetric carbon in the side chains were obtained. CD measurements indicated that the incorporation of chiral amine into polymer side chains induced helicity formation of P1 backbone. P1-C*Ph(L) and P1-C*Ph(D) backbones adopt predominantly right-handed and left-handed helical conformation, respectively. While the flexible spacer between the chiral center and the rigid PPA backbone blocked the induction of main-chain helicity by chiral pendants, thus no CD signals were recorded for P2-C*Ph(L) and P3-C*Ph(L). Substitution of PFP ester with amine-functionalized PEGs transited the hydrophobic PPAs to hydrophilic. All of the PEG-containing PPAs can be dissolved in water and form clear solutions. Meanwhile, all of the aqueous solutions exhibit LCST behavior and the hydrophilic PEG chains and hydrophobic alkyl spacers have positive and negative impact on the cloud point, respectively. Contact angles measurements showed that the length and content of the PEG chains contribute greatly to the hydrophilic property, and the length of the alkyl spacers and the content of the alkyl amine component played a contrary role. By controlling the ratio of the PEGylated and alkyl amines, the amphiphilic property of the PPAs can be well tailored.
Steam is a common medium in thermal engineering. When it flows through a throttling element, the aerodynamic noise may occur due to the disturbance. In this investigation, superheated steam flowing through a Venturi tube, one of the main parts in a temperature and pressure regulation valve, at different thermal conditions is studied to analyze to effects of heat transfer on the acoustic power. With a high temperature and a low pressure, the superheated steam is treated as ideal gas. The flow velocity is high, so the k-epsilon turbulent model is used, with the compressible steam. The results show that under the adiabatic condition, the acoustic power mainly influenced by the turbulent characteristics, such as the dissipation rate and the turbulent kinetic energy. Comparing the acoustic power levels at different thermal conditions, it is found that a lower temperature results to a lower acoustic power.
Corrugated tubes are widely used in a range of applications for heat transfer enhancement. The spirally corrugated tube has a better heat transfer performance than the smooth tube. In this paper, the heat transfer performance of a hybrid smooth and six-start spirally corrugated tube is studied. With a validated numerical model, the effects of the corrugation part length on the vortex in the downstream smooth tube are studied for a range of high Reynolds numbers, where the existence of the corrugation part can turn out the secondary flow and enhance heat transfer. Meanwhile, it is found that in the smooth part, the fluid flow part with whirling can reach a maximum length, even if the length of the corrugation part continuously increases. Thus a series of critical corrugation lengths can be obtained. This work can reveal the enhanced heat transfer mechanism of the hybrid smooth and spirally corrugated tube and be of interest to researchers in heat transfer issues of corrugated tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.