An accurate vessel fuel consumption prediction is essential for constructing a ship route network and vessel management, leading to efficient sailings. Besides, ship data from monitoring and sensing systems accelerate fuel consumption prediction research. However, the ship data consist of three properties: sequential, irregular time interval, and feature importance, making the predicting problem challenging. In this paper, we propose Time-aware Attention (TA) and Feature-similarity Attention (FA) applied to bi-directional Long Short-Term Memory (LSTM). TA acquires time importance by nonlinear function from irregular time intervals in each sequence and emphasizes data depending on the importance. FA emphasizes data based on similarities of features in the sequence by estimating feature importance with learnable parameters. Finally, we propose the ensemble model of TA and FA-based BiLSTM. The ensemble model, which consists of fully connected layers, is capable of simultaneously capturing different properties of ship data. The experimental results on ship data showed that the proposed model improves the performance in predicting fuel consumption. In addition to model performance, visualization results of attention maps and feature importance help to understand data properties and model characteristics.
Colonoscopy is an effective method for detecting polyps to prevent colon cancer. Existing studies have achieved satisfactory polyp detection performance by aggregating low-level boundary and high-level region information in convolutional neural networks (CNNs) for precise polyp segmentation in colonoscopy images. However, multi-level aggregation provides limited polyp segmentation owing to the distribution discrepancy that occurs when integrating different layer representations. To address this problem, previous studies have employed complementary low- and high- level representations. In contrast to existing methods, we focus on propagating complementary information such that the complementary low-level explicit boundary with abstracted high-level representations diminishes the discrepancy. This study proposes COMMA, which propagates complementary multi-level aggregation to reduce distribution discrepancies. COMMA comprises a complementary masking module (CMM) and a boundary propagation module (BPM) as a multi-decoder. The CMM masks the low-level boundary noises through the abstracted high-level representation and leverages the masked information at both levels. Similarly, the BPM incorporates the lowest- and highest-level representations to obtain explicit boundary information and propagates the boundary to the CMMs to improve polyp detection. CMMs can discriminate polyps more elaborately than prior CMMs based on boundary and complementary representations. Moreover, we propose a hybrid loss function to mitigate class imbalance and noisy annotations in polyp segmentation. To evaluate the COMMA performance, we conducted experiments on five benchmark datasets using five metrics. The results proved that the proposed network outperforms state-of-the-art methods in terms of all datasets. Specifically, COMMA improved mIoU performance by 0.043 on average for all datasets compared to the existing state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.