In this study, we investigated the abundance and diversity of single-stranded DNA (ssDNA) viruses in fecal samples from five healthy individuals through a combination of serial filtration and CsCl gradient ultracentrifugation. Virus abundance ranged from 10 8 to 10 9 per gram of feces, and virus-to-bacterium ratios were much lower (less than 0.1) than those observed in aquatic environments (5 to 10). Viral DNA was extracted and randomly amplified using phi29 polymerase and analyzed through high-throughput 454 pyrosequencing. Among 400,133 sequences, an average of 86.2% viromes were previously uncharacterized in public databases. Among previously known viruses, double-stranded DNA podophages (52 to 74%), siphophages (11 to 30%), myophages (1 to 4%), and ssDNA microphages (3 to 9%) were major constituents of human fecal viromes. A phylogenetic analysis of 24 large contigs of microphages based on conserved capsid protein sequences revealed five distinct newly discovered evolutionary microphage groups that were distantly related to previously known microphages. Moreover, putative capsid protein sequences of five contigs were closely related to prophage-like sequences in the genomes of three Bacteroides and three Prevotella strains, suggesting that Bacteroides and Prevotella are the sources of infecting microphages in their hosts.
Human gut microbiota plays important roles in harvesting energy from the diet, stimulating the proliferation of the intestinal epithelium, developing the immune system, and regulating fat storage in the host. Characterization of gut microbiota, however, has been limited to western people and is not sufficiently extensive to fully describe microbial communities. In this study, we investigated the overall composition of the gut microbiota and its host specificity and temporal stability in 20 Koreans using 454-pyrosequencing with barcoded primers targeting the V1 to V3 region of the bacterial 16S rRNA gene. A total of 303,402 high quality reads covered each sample and 8,427 reads were analyzed on average. The results were compared with those of individuals from the USA, China and Japan. In general, microbial communities were dominated by five previously identified phyla: Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Proteobacteria. UPGMA cluster analysis showed that the species composition of gut microbiota was host-specific and stable over the duration of the test period, but the relative abundance of each member fluctuated. 43 core Korean gut microbiota were identified by comparison of sequences from each individual, of which 15 species level phylotypes were related to previously-reported butyrate-producing bacteria. UniFrac analysis revealed that human gut microbiota differed between countries: Korea, USA, Japan and China, but tended to vary less between individual Koreans, suggesting that gut microbial composition is related to internal and external characteristics of each country member such as host genetics and diet styles.
Bacteriophages are central members and potential modulators of the gut microbiome; however, the ecological and evolutionary relationships of gut bacteria and phages are poorly understood. Here we investigated the abundance and diversity of lysogenic bacteria (lysogens) in the bacterial community of C57BL/6J mice by detecting integrated prophages in genomes reconstructed from the metagenome of commensal bacteria. For the activities of lysogens and prophages, we compared the prophage genomes with the metagenome of free phages. The majority of commensal bacteria in different taxa were identified as lysogens. More lysogens were found among Firmicutes and Proteobacteria, than among Bacteroidetes and Actinobacteria. The prophage genomes shared high sequence similarity with the metagenome of free phages, indicating that most lysogens appeared to be active, and that prophages are spontaneously induced as active phages; dietary interventions changed the composition of the induced prophages. By contrast, CRISPR-Cas systems were present in few commensal bacteria, and were rarely active against gut phages. The structure of the bacteria-phage infection networks was "nested-modular", with modularity emerging across taxonomic scales, indicating that temperate phage features have developed over a long phylogenetic timescale. We concluded that phage generalists contribute to the prevalence of lysogeny in the gut ecosystem.
Airborne viruses are expected to be ubiquitous in the atmosphere but they still remain poorly understood. This study investigated the temporal and spatial dynamics of airborne viruses and their genotypic characteristics in air samples collected from three distinct land use types (a residential district [RD], a forest [FR], and an industrial complex [IC]) and from rainwater samples freshly precipitated at the RD site (RD-rain). Viral abundance exhibited a seasonal fluctuation in the range between 1.7 ؋ 10 6 and 4.0 ؋ 10 7 viruses m ؊3 , which increased from autumn to winter and decreased toward spring, but no significant spatial differences were observed. Temporal variations in viral abundance were inversely correlated with seasonal changes in temperature and absolute humidity. Metagenomic analysis of air viromes amplified by rolling-circle phi29 polymerase-based random hexamer priming indicated the dominance of plant-associated single-stranded DNA (ssDNA) geminivirus-related viruses, followed by animal-infecting circovirus-related sequences, with low numbers of nanoviruses and microphages-related genomes. Particularly, the majority of the geminivirus-related viruses were closely related to ssDNA mycoviruses that infect plant-pathogenic fungi. Phylogenetic analysis based on the replication initiator protein sequence indicated that the airborne ssDNA viruses were distantly related to known ssDNA viruses, suggesting that a high diversity of viruses were newly discovered. This research is the first to report the seasonality of airborne viruses and their genetic diversity, which enhances our understanding of viral ecology in temperate regions.
Gut microbial biogeography is a key feature of host-microbe relationships. In gut viral ecology, biogeography and responses to dietary intervention remain poorly understood. Here, we conducted a metagenomic study to determine the composition of the mucosal and luminal viromes of the gut and to evaluate the impact of a Western diet on gut viral ecology. We found that mucosal and luminal viral assemblages comprised predominantly temperate phages. The mucosal virome significantly differed from the luminal virome in low-fat diet-fed lean mice, where spatial variation correlated with bacterial microbiota from the mucosa and lumen. The mucosal and luminal viromes of high-fat, high-sucrose 'Western' diet-fed obese mice were significantly enriched with temperate phages of the Caudovirales order. Interestingly, this community alteration occurred to a greater extent in the mucosa than lumen, leading to loss of spatial differences; however, these changes recovered after switching to a low-fat diet. Temperate phages enriched in the Western diet-induced obese mice were associated with the Bacilli, Negativicutes and Bacteroidia classes and temperate phages from the Bacteroidia class particularly encoded stress and niche-specific functions advantageous to bacterial host adaptation. This study illustrates a biogeographic view of the gut virome and phage-bacterial host connections under the diet-induced microbial dysbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.