Abstract-The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labor-intensive step in which the user browses and selects a desired query motion clip from the large motion clip database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users' expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic (SH) basis functions, which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerically similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.
Abstract-In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.
In this paper, a novel graph-based shape matching scheme for three-dimensional articulated objects is introduced. The underlying graph structure of a given 3D model is composed of its topological skeleton and local geometric features. Matching two graph structures is generally an NP-hard combinatorial optimization problem. To reduce computation cost, two graphs are embedded on a high-dimensional space, and then matched based on an extension of Earth Mover's Distance (EMD). Furthermore, the symmetric components of an articulated object are determined by a voting algorithm with a selfmatching strategy to refine the matching correspondences. Experimental results show that the proposed approach is robust, even when the models are under the surface disturbances of noise addition, smoothing, simplification, similarity transformation, and pose deformation. In addition, the proposed approach is capable of handling both global and partial shape matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.