Agrobacterium tumefaciens causes crown gall disease in a wide range of plants by transforming plants through the transfer and integration of its transferred DNA (T-DNA) into the host genome. In the present study, we used two-dimensional gel electrophoresis to examine the protein expression profiles of A. tumefaciens in response to the phenolic compound acetosyringone (AS), a known plant-released virulence (vir) gene inducer. Using mass spectrometry, we identified 11 proteins consisting of 9 known AS-induced Vir proteins and 2 newly discovered AS-induced proteins, an unknown protein Y4mC (Atu6162) and a small heat shock protein HspL (Atu3887). Further expression analysis revealed that the AS-induced expression of Y4mC and HspL is regulated by the VirA/VirG two-component system. This report presents the first proteomics study successfully identifying both known and new AS-induced proteins that are implicated in Agrobacterium virulence.
Using the small intestine enterocyte Caco-2 cell model, sucrase-isomaltase (SI, the mucosal α-glucosidase complex) expression and modification were examined relative to exposure to different mono- and disaccharide glycemic carbohydrates. Caco-2/TC7 cells were grown on porous supports to post-confluence for complete differentiation, and dietary carbohydrate molecules of glucose, sucrose (disaccharide of glucose and fructose), maltose (disaccharide of two glucoses α-1,4 linked), and isomaltose (disaccharide of two glucoses α-1,6 linked) were used to treat the cells. qRT-PCR results showed that all the carbohydrate molecules induced the expression of the SI gene, though maltose (and isomaltose) showed an incremental increase in mRNA levels over time that glucose did not. Western blot analysis of the SI protein revealed that only maltose treatment induced a higher molecular weight band (Mw ~245 kDa), also at higher expression level, suggesting post-translational processing of SI, and more importantly a sensing of maltose. Further work is warranted regarding this putative sensing response as a potential control point for starch digestion and glucose generation in the small intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.