N⑀ -(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in concert with conjugated dienes but was independent of the presence of the Amadori compound, fructoselysine, on the protein. CML was also formed in a time-dependent manner in RNase incubated under aerobic conditions in phosphate buffer containing arachidonate or linoleate; only trace amounts of CML were formed from oleate. After 6 days of incubation the yield of CML in RNase from arachidonate was ϳ0.7 mmol/mol lysine compared with only 0.03 mmol/mol lysine for protein incubated under the same conditions with glucose. Glyoxal, a known precursor of CML, was also formed during incubation of RNase with arachidonate. These results suggest that lipid peroxidation, as well as glycoxidation, may be an important source of CML in tissue proteins in vivo and that CML may be a general marker of oxidative stress and long term damage to protein in aging, atherosclerosis, and diabetes.
Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.
The Maillard or browning reaction between sugar and protein contributes to the increased chemical modification and cross-linking of long-lived tissue proteins in diabetes. To evaluate the role of glycation and oxidation in these reactions, we have studied the effects of oxidative and antioxidative conditions and various types of inhibitors on the reaction of glucose with rat tail tendon collagen in phosphate buffer at physiological pH and temperature. The chemical modifications of collagen that were measured included fructoselysine, the glycoxidation products N epsilon-(carboxymethyl)lysine and pentosidine and fluorescence. Collagen cross-linking was evaluated by analysis of cyanogen bromide peptides using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by changes in collagen solubilization on treatment with pepsin or sodium dodecylsulfate. Although glycation was unaffected, formation of glycoxidation products and cross-linking of collagen were inhibited by antioxidative conditions. The kinetics of formation of glycoxidation products proceeded with a short lag phase and were independent of the amount of Amadori adduct on the protein, suggesting that autoxidative degradation of glucose was a major contributor to glycoxidation and cross-linking reactions. Chelators, sulfhydryl compounds, antioxidants, and aminoguanidine also inhibited formation of glycoxidation products, generation of fluorescence, and cross-linking of collagen without significant effect on the extent of glycation of the protein. We conclude that autoxidation of glucose or Amadori compounds on protein plays a major role in the formation of glycoxidation products and cross-liking of collagen by glucose in vitro and that chelators, sulfhydryl compounds, antioxidants, and aminoguanidine act as uncouplers of glycation from subsequent glycoxidation and cross-linking reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.