We report the preparation of free-standing flexible conductive reduced graphene oxide/Nafion (RGON) hybrid films by a solution chemistry that utilizes self-assembly and directional convective-assembly. The hydrophobic backbone of Nafion provided well-defined integrated structures, on micro- and macroscales, for the construction of hybrid materials through self-assembly, while the hydrophilic sulfonate groups enabled highly stable dispersibility ( approximately 0.5 mg/mL) and long-term stability (2 months) for graphene. The geometrically interlocked morphology of RGON produced a high degree of mechanical integrity in the hybrid films, while the interpenetrating network constructed favorable conduction pathways for charge transport. Importantly, the synergistic electrochemical characteristics of RGON were attributed to high conductivity (1176 S/m), facilitated electron transfer (ET), and low interfacial resistance. Consequently, RGON films obtained the excellent figure of merit as electrochemical biosensing platforms for organophosphate (OP) detection, that is, a sensitivity of 10.7 nA/microM, detection limit of 1.37 x 10(-7) M, and response time of <3 s. In addition, the reliability of RGON biosensors was confirmed by a fatigue test of 100 bending cycles. The strategy described here provides insight into the fabrication of graphene and hybrid nanomaterials from a material perspective, as well as the design of biosensor platforms for practical device applications.
Aqueous ZnÀ S battery with high energy density represents a promising large-scale energy storage technology, but its application is severely hindered by the poor reversibility of both S cathode and Zn anode. Herein, we develop a "cocktail optimized" electrolyte containing tetraglyme (G4) and water as cosolvents and I 2 as additive. The G4-I 2 synergy could activate efficient polar I 3 À /I À catalyst couple and shield the cathode from water, thus facilitating the conversion kinetics of S and suppressing the interfacial side reactions. Simultaneously, it could stabilize Zn anode by forming an organic-inorganic interphase upon cycling. With boosted electrodes reversibility, the ZnÀ S cell delivers a high capacity of 775 mAh g À 1 at 2 A g À 1 , and retains over 70 % capacity after 600 cycles at 4 A g À 1 .The advances can also be readily generalized to other ethers/water hybrid electrolytes, showing the universality of the "cocktail optimized" electrolyte design strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.