The existence of colorectal cancer stem-like cells (cSc) is responsible for the failure of current treatments against colorectal cancer. Therefore, novel therapies need be developed to target cScs. Some natural agents, including morusin have been proposed as possible candidates for this purpose. Morusin has been shown to exert antitumor effects. In the present study, it is demonstrated that morusin exerts antitumor effects on colorectal cScs (ccScs). The viability of human ccScs was enhanced when the ccScs formed spheroids in a serum-free and non-adhesive floating culture system. HcT116 sphere cells exhibited an increased proliferative capacity and a higher expression of stemness markers [octamer-binding transcription factor 4 (Oct4), Sox2 and Nanog]. Morusin inhibited the development of cancer spheroids and suppressed the growth of sphere cells via the induction of cell cycle arrest. Similarly, morusin decreased the expression levels of the stemness markers, Nanog and Oct4. The data partially revealed the molecular mechanisms involved: β-catenin signaling maintains the growth of cScs and directly modulates the expression of Nanog and Oct4. Morusin suppressed the activity of β-catenin signaling via the inactivation of Akt; the executive β-catenin/TcF4 complex and the downstream targets, c-Myc, survivin and cyclin d1, were also downregulated. Moreover, the morusin-induced inactivation of Akt also increased the expression of p21cip1/WAF1 and p27Kip, which can block the cell cycle by interacting with cyclin-dependent kinase (cdK) complexes. On the whole, the present study demonstrates that morusin inhibited the growth of colorectal cancer sphere cells, which were enriched with ccScs via the inactivation of the Akt pathway.
The purpose of this study is to explore the anti‐colorectal cancer of Xiaotansanjiefang, a famous traditional Chinese medicine, and its potential anti‐cancer mechanism. In this study, the HCT116 cell spheres were prepared as in vitro study model. We found the Xiaotansanjiefang medication was able to inhibit the proliferation of HCT116 cell spheres in a dose‐dependent manner, especially in 3 and 6 mg/ml Xiaotansanjiefang medication treated groups. We also found the high concentration of Xiaotansanjiefang medication could suppress the migration and promote the apoptosis of HCT116 cell spheres. Moreover, we found the expression of Jagged 1, Notch 3, Snail, and Hes 1 were decreased in HCT116 cell spheres treated with Xiaotansanjiefang medication. Furthermore, the proliferation and apoptosis behaviors of HCT116 cell spheres treated with Xiaotansanjiefang medication were reversed with the addition of Jagged 1 Fc chimera protein. The expression of Jagged 1, Notch 3, Snail, and Hes 1 were also increased again in HCT116 cells treated with Xiaotansanjiefang medication plus with Jagged 1 Fc chimera protein. The presented study may provide a promising strategy to treat and prevent colorectal cancer.
The aim of the study is to investigate the mechanism of action of Disulfiram against colon cancer through a network pharmacology approach. The targets were then imported into the Cytoscape 3.7.2 software to construct a network of active ingredient targets and were imported into the STRING database to construct a protein-protein interaction (PPI) network, and the Bisogenet plug-in in Cytoscape 3.7.2 was used for network topology analysis. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the potential targets of Yiqi and Baiyu Tang for colon cancer using the R-language Bioconductor platform, and the results were imported into Cytoscape 3.7.2 to obtain KEGG network relationship maps. Molecular docking software Autodock Vina was used to map the core targets to the active ingredients. A total of 119 chemical components and 694 disease targets were obtained, including 113 intersecting targets. The key targets included AKT1 and TP53, and GO functional analysis mainly related to ubiquitination and apoptosis, etc. KEGG analysis showed that the treatment of colon cancer with Ganchenzan mainly acted through cancer-related signaling pathways such as AGE-RAGE and P13K-Akt, and the molecular docking results showed the best binding performance with TP53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.