Streptococcus pneumoniae is a major respiratory pathogen that causes millions of deaths worldwide. Although subunit vaccines formulated with the capsular polysaccharides or their protein conjugates are currently-available, low-cost vaccines with wide serotype coverage still remain to be developed, especially for developing countries. Recently, gamma- irradiation has been considered as an effective inactivation method to prepare S. pneumoniae vaccine candidate. In this study, we investigated the immunogenicity and protective immunity of gamma-irradiated S. pneumoniae (r-SP), by comparing with heat-inactivated S. pneumoniae (h-SP) and formalin-inactivated S. pneumoniae (f-SP), both of which were made by traditional inactivation methods. Intranasal immunization of C57BL/6 mice with r-SP in combination with cholera toxin as an adjuvant enhanced S. pneumoniaespecific antibodies on the airway mucosal surface and in sera more potently than that with h-SP or f-SP under the same conditions. In addition, sera from mice immunized with r-SP potently induced opsonophagocytic killing activity more effectively than those of h-SP or f-SP, implying that r-SP could induce protective antibodies. Above all, immunization with r-SP effectively protected mice against S. pneumoniae infection. Collectively, these results suggest that gamma- irradiation is an effective method for the development of a killed whole cell pneumococcal vaccine that elicits robust mucosal and systemic immune responses.
Streptococcus pneumoniae (pneumococcus) can cause respiratory and systemic diseases. Recently, γ-irradiation-inactivated, non-encapsulated, intranasal S. pneumoniae (r-SP) vaccine has been introduced as a novel serotype-independent and cost-effective vaccine. However, the immunogenic mechanism of r-SP is poorly understood. Here, we comparatively investigated the protective immunity and immunogenicity of r-SP to the heat-(h-SP) or formalin-inactivated vaccine (f-SP) without adjuvants. Mice were intranasally immunized with each vaccine three times and then challenged with a lethal dose of S. pneumoniae TIGR4 strain and then subsequently evaluated for their immune responses. Immunization with r-SP elicited modestly higher protection against S. pneumoniae than h-SP or f-SP. Immunization with r-SP enhanced pneumococcal-specific IgA in the nasal wash and IgG in bronchoalveolar lavage fluid. Immunization with r-SP enhanced S. pneumoniae-specific IgG, IgG1, and IgG2b in the serum. r-SP more potently induced the maturation of dendritic cells in the cervical lymph nodes than h-SP or f-SP. Interestingly, populations of follicular helper T cells and IL-4-producing cells were potently increased in cervical lymph nodes of r-SP-immunized mice. Collectively, r-SP could be an effective intranasal, inactivated whole-cell vaccine in that it elicits S. pneumoniae-specific antibody production and follicular helper T cell activation leading to protective immune responses against S. pneumoniae infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.