IntroductionProlonged postoperative analgesia cannot be achieved by a single injection of local anesthetic solution. The objective of this study was to optimize the formulation of a ropivacaine hydrochloride (Ropi-HCl) loaded in situ forming implant (ISI) by addition of different co-solvents, and evaluate the in vitro release of Ropi-HCl, and the analgesic effect and toxicity of the optimized formulation in rats.Material and methodsTriacetin (TA), benzyl benzoate (BB) and polyethylene glycol 400 (PEG 400) were used as additives and added to the solvent of N-methyl-2-pyrrolidone (NMP). Drug release to the surface and inner structural properties of the formed implant were evaluated by scanning electron microscopy (SEM). The analgesic effect was determined by injection near the rat sciatic nerve.ResultsThe solvent system added with TA or BB significantly decreased the burst release, whereas PEG 400 increased the Ropi-HCl burst release from the formulation. Over 70% of the incorporated Ropi-HCl was released from all formulations in 14 days in the in vitro assay. The SEM showed that the surface of NMP-BB formulation was less porous and more homogeneous, compared with the other formulations. Compared with Ropi-HCl injection, the optimized formulation (NMP-BB) significantly prolonged the analgesic effect in 48 h (p < 0.05), with a mild degree of motor block from 3 h to 12 h. Histological evaluation of the injection site revealed only mild inflammatory infiltration without obvious pathological nerve alterations.ConclusionsThe biodegradable Ropi-HCl-loaded ISI system with NMP-BB may prove to be an attractive and safe alternative for the delivery of parenteral local anesthetics to prolong pain relief.
Abstract:The benefits of an electron-transfer mechanism for petroleum biodegrading have been widely acknowledged, but few have studied the spatial pattern of microbial community diversity in groundwater fields, and few discuss the bacterial community's diversity in relation to electron donors-acceptors distribution, which is largely determined by groundwater flow. Eleven samples in different groundwater fields are collected at a petroleum-contaminated site, and the microbial communities are investigated using 16S rRNA gene sequences with multivariate statistics. These are mainly linked to the chemical composition analysis of electron donor indexes COD, BTEX and electron acceptor indexes DO, NO 3 − , Fe 2+ , Mn 2+ , and SO 4 2− , HCO 3 − . The spatial pattern of the bacterial community's diversity is characterized and the effect of the electron redox reaction on bacterial community formation in different groundwater field zones is elucidated. It is found that a considerable percentage (>65%) of the bacterial communities related to petroleum degrading suggest that petroleum biodegrading is occurring in groundwater. The communities are subject to the redox reaction in different groundwater field zones: The side plume zone and the upstream of the source zone are under aerobic redox or denitrification redox, and the corresponding bacteria are Rhodoferax, Novosphingobium, Hydrogenophaga, and Comamonas; the source zone and downstream of the source zone are under Fe 3+ , Mn 4+ , and SO 4 2− reduction redox, and the corresponding bacteria are Rhodoferax, Treponema, Desulfosporosinus, Hydrogenophaga, and Acidovorax. These results imply that groundwater flow plays a definitive role in the bacterial community's diversity spatial pattern formation by influencing the distribution of electron donor and acceptor.
In petroleum-contaminated aquifers, biodegradation is always associated with various types of microbial metabolism. It can be classified as autotrophic (such as methanogenic and other carbon fixation) and heterotrophic (such as nitrate/sulfate reduction and hydrocarbon consumption) metabolism. For each metabolic type, there are several key genes encoding the reaction enzymes, which can be identified by metagenomics analysis. Based on this principle, in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer in North China, nine groundwater samples were collected along the groundwater flow, and metagenomics analysis was used to discover biodegradation related metabolism by key genes. The major new finding is that autotrophic metabolism was revealed, and, more usefully, we attempt to explain the reasons for abnormally low DIC. The results show that the methanogenesis gene, Mcr, was undetected but more carbon fixation genes than nitrate reduction and sulfate genes were found. This suggests that there may be a considerable number of autotrophic microorganisms that cause the phenomenon of low concentration of dissolved inorganic carbon in contaminated areas. The metagenomics data also revealed that most heterotrophic, sulfate, and nitrate reduction genes in the aquifer were assimilatory sulfate and dissimilatory nitrate reduction genes. Although there was limited dissolved oxygen, aerobic degrading genes AlkB and Cdo were more abundant than anaerobic degrading genes AssA and BssA. The metagenomics information can enrich our microorganic knowledge about petroleum-contaminated aquifers and provide basic data for further bioremediation.
IntroductionGroundwater is considered the best candidate for drinking water supply in the karst area. The groundwater water resources, however, are vulnerable to pathogenic microorganism contamination because of the typically thin soil layers overlying aquifers and the high permeability of the aquifer host rock, resulting in short residence times and low natural attenuation capacities. Until now, little attention has been paid to the critical environmental factors affecting the pathogenic microorganism contamination in soil-groundwater systems in the karst area.MethodsIn the study, orthogonality column experiments with controlling ambient temperatures, pH values of inlet water, and soil porosities were carried out to investigate the transport and lifespan of pathogenic microorganisms in the leachate of agricultural soils in the karst area of Yunnan province, China. The pathogenic indicators, i.e., total bacteria count (TBC) and total coliforms count (TCC), and hydrochemical parameters, i.e., pH and permanganate index (CODMn) in the leaching water, were systematically monitored.Results and DiscussionThe results showed that bacteria including coliforms can survive for prolonged periods of time in karst soils. The soils overlying the karst rocks were unable to impede the bacteria from seeping into the groundwater. The soils, in turn, likely served as both reservoirs and incubators for pathogenic bacteria. The ambient temperature was the most predominant influential factor affecting both TBC and TCC. The bacteria concentrations were proportional to the temperature in the leachate. Therefore, more attention should be paid to temperature variations in protecting the water supply, particularly in the high-temperature period, such as during the summer months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.