Multi-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces. The system consists of a bundle of microwires mated to large-scale microelectrode arrays, such as camera chips. This system has excellent recording performance, demonstrated via single unit and local-field potential recordings in isolated retina and in the motor cortex or striatum of awake moving mice. The modular design enables a variety of microwire types and sizes to be integrated with different types of pixel arrays, connecting the rapid progress of commercial multiplexing, digitisation and data acquisition hardware together with a three-dimensional neural interface.
Objective. Decoding neural activity has been limited by the lack of tools available to record from large numbers of neurons across multiple cortical regions simultaneously with high temporal fidelity. To this end, we developed the Argo system to record cortical neural activity at high data rates. Approach. Here we demonstrate a massively parallel neural recording system based on platinum-iridium microwire electrode arrays bonded to a CMOS voltage amplifier array. The Argo system is the highest channel count in vivo neural recording system, supporting simultaneous recording from 65 536 channels, sampled at 32 kHz and 12-bit resolution. This system was designed for cortical recordings, compatible with both penetrating and surface microelectrodes. Main results. We validated this system through initial bench testing to determine specific gain and noise characteristics of bonded microwires, followed by in-vivo experiments in both rat and sheep cortex. We recorded spiking activity from 791 neurons in rats and surface local field potential activity from over 30 000 channels in sheep. Significance. These are the largest channel count microwire-based recordings in both rat and sheep. While currently adapted for head-fixed recording, the microwire-CMOS architecture is well suited for clinical translation. Thus, this demonstration helps pave the way for a future high data rate intracortical implant.
Microscale electrodes are rapidly becoming critical tools for neuroscience and brain-machine interfaces (BMIs) for their high spatial and temporal resolution. However, the mechanics of how devices on this scale insert into brain tissue is unknown, making it difficult to balance between larger probes with higher stiffness, or smaller probes with lower damage. Measurements have been experimentally challenging due to the large deformations, rapid events, and small forces involved. Here we modified a nanoindentation force measurement system to provide the first ultra-high resolution force, distance, and temporal recordings of brain penetration as a function of microwire diameter (7.5 µm to 100 µm) and tip geometry (flat, angled, and electrosharpened).Surprisingly, both penetration force and tissue compression scaled linearly with wire diameter, rather than cross-sectional area. Linear brain compression with wire diameter strongly suggest smaller probes will cause less tissue damage upon insertion, though unexpectedly no statistical difference was observed between angled and flat tipped probes. These first of their kind measurements provide a mechanical framework for designing effective microprobe geometries while limiting mechanical damage.
Microscale electrodes, on the order of 10-100 μm, are rapidly becoming critical tools for neuroscience and brain-machine interfaces (BMIs) for their high channel counts and spatial resolution, yet the mechanical details of how probes at this scale insert into brain tissue are largely unknown. Here, we performed quantitative measurements of the force and compression mechanics together with real-time microscopy for in vivo insertion of a systematic series of microelectrode probes as a function of diameter (7.5-100 μm and rectangular Neuropixels) and tip geometry (flat, angled, and electrochemically sharpened). Results elucidated the role of tip geometry, surface forces, and mechanical scaling with diameter. Surprisingly, the insertion force post-pia penetration was constant with distance and did not depend on tip shape. Real-time microscopy revealed that at small enough lengthscales (<25 μm), blood vessel rupture and bleeding during implantation could be entirely avoided. This appears to occur via vessel displacement, avoiding capture on the probe surface which led to elongation and tearing for larger probes. We propose a new, three-zone model to account for the probe size dependence of bleeding, and provide mechanistic guidance for probe design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.