The combined activation of the cellular energy sensor AMP‐activated protein kinase (AMPK) and the nuclear transcription factor peroxisome proliferator‐activated receptor delta (PPAR δ) has been demonstrated to improve endurance and muscle function by mimicking the effects of exercise training. However, their combined pharmacological activation with exercise training has not been explored. Balb/c mice were trained on a treadmill and administered both the AMPK activator AICAR and the PPAR δ agonist GW0742 for 4 weeks. AICAR treatment potentiated endurance, but the combination of AICAR and GW0742 further potentiated endurance and increased all running parameters significantly relative to exercised and nonexercised groups (138–179% and 355% increase in running time, respectively). Despite the lack of change in basal whole‐body metabolism, a significant shift to fat as the main energy source with a decline in carbohydrate utilization was observed upon indirect calorimetry analysis at the period near exhaustion. Increased energy substrates before exercise, and elevated muscle nonesterified fatty acids (NEFA) and elevated muscle glycogen at exhaustion were observed together with increased PDK4 mRNA expression. Citrate synthase activity was elevated in AICAR‐treated groups, while PGC‐1α protein level tended to be increased in GW0742‐treated groups. At exhaustion, Pgc1a was robustly upregulated together with Pdk4, Cd36, and Lpl in the muscle. A robust upregulation of Pgc1a and a downregulation in Chrebp were observed in the liver. Our data show that combined pharmacological activation of AMPK and PPAR δ potentiates endurance in trained mice by transcriptional changes in muscle and liver, increased available energy substrates, delayed hypoglycemia through glycogen sparing accompanied by increased NEFA availability, and improved substrate shift from carbohydrate to fat.
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged women. Recently, various dietary interventions have been used extensively as a novel therapy against PCOS. In the present study, we show that soy isoflavone metabolites and resistant starch, together with gut microbiota modulations, were successful in decreasing the severity of PCOS-like reproductive features while increasing the expression of gut barrier markers and butyric acid in the gut. In the letrozole-induced PCOS model rats, the intake of both 0.05% soy isoflavones and 11% resistant starch, even with letrozole treatment, reduced the severity of menstrual irregularity and polycystic ovaries with a high concentration of soy isoflavones and equol in plasma. Antibiotic cocktail treatment suppressed soy isoflavone metabolism in the gut and showed no considerable effects on reducing the PCOS-like symptoms. The mRNA expression level of occludin significantly increased with soy isoflavone and resistant starch combined treatment. Bacterial genera such as Blautia, Dorea and Clostridium were positively correlated with menstrual irregularity under resistant starch intake. Moreover, the concentration of butyric acid was elevated by resistant starch intake. In conclusion, we propose that both dietary interventions and gut microbiota modulations could be effectively used in reducing the severity of PCOS reproductive features.
Fatty acids (FA) are an important energy source during exercise. In addition to its role as an energy supply for skeletal muscle, FA may activate signaling pathways that regulate gene expression. FA translocase/cluster of differentiation 36 (CD36) and G protein-coupled receptor GPR120 are long-chain FA receptors. In this study, we investigated the impact of CD36 or GPR120 deletion on energy metabolism during exercise. CD36 has been reported to facilitate cellular transport and oxidation of FA during endurance exercise. We show that CD36 deletion decreased exogenous FA oxidation during exercise, using a combination of (13)C-labeled FA oxidation measurement and indirect calorimetry. In contrast, GPR120 deletion had no observable effect on energy metabolism during exercise. Our results further substantiate that CD36-mediated FA transport plays an essential role in efficient FA oxidation during exercise.
We previously found that daidzein decreased food intake in female rats. The present study aimed to elucidate the relationship between dynamics of appetite-mediated neuropeptides and the anorectic effect of daidzein. We examined appetite-mediated gene expression in the hypothalamus and small intestine during the 3 meals per day feeding method. Daidzein had an anorectic effect specifically at the second feeding. Neuropeptide-Y (NPY) and galanin mRNA levels in the hypothalamus were significantly higher after feeding in the control but not in the daidzein group, suggesting that daidzein attenuated the postprandial increase in NPY and galanin expression. The daidzein group had higher corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamus after feeding, and increased cholelcystokinin (CCK) mRNA levels in the small intestine, suggesting that CCK is involved in the hypothalamic regulation of this anorectic effect. Therefore, daidzein may induce anorexia by suppressing expression of NPY and galanin and increasing expression of CRH in the hypothalamus.
We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.