Dissection of cardiomyocyte differentiation process at the cellular level is indispensable in the research for cardiac development and regeneration. Previously, we have established an embryonic stem cell differentiation system that reproduces early vascular development from progenitor cells that express Flk1, a vascular endothelial growth factor receptor, by the combinatory application of 2-dimensional culture and flowcytometry. Here we show that cardiomyocytes can be successfully induced from a single Flk1+ cell on 2-dimensional culture, enabling the direct observation of differentiating cardiomyocytes and the prospective identification of cardiac progenitor potentials. Flk1+ cells could give rise to cardiomyocytes, as well as endothelial cells, from a single cell by the co-culture on OP9 stroma cells in a fusion-independent manner. Among the cell populations in intermediate stages from Flk1+ cells to cardiomyocytes, Flk1+/CXCR4+/vascular endothelial cadherin- cells were cardiac-specific progenitors at the single cell level. Noggin, a bone morphogenetic protein inhibitor, abolished cardiomyocyte differentiation by inhibiting the cardiac progenitor induction. However, wnt inhibitors Dkk-1 or Frizzled-8/Fc chimeric protein augmented, but wnt3a inhibited, cardiomyocyte differentiation. In vitro reproduction of cardiomyocyte differentiation process should be a potent tool for the cellular and molecular elucidation of cardiac development, which would provide various targets for cardiac regeneration.
Objective— The acquisition of arterial or venous identity is highlighted in vascular development. Previously, we have reported an embryonic stem (ES) cell differentiation system that exhibits early vascular development using vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2)-positive cells as common vascular progenitors. In this study, we constructively induced differentiation of arterial and venous endothelial cells (ECs) in vitro to elucidate molecular mechanisms of arterial-venous specification. Methods and Results— ECs were induced from VEGFR2 + progenitor cells with various conditions. VEGF was essential to induce ECs. Addition of 8bromo-cAMP or adrenomedullin (AM), an endogenous ligand-elevating cAMP, enhanced VEGF-induced EC differentiation. Whereas VEGF alone mainly induced venous ECs, 8bromo-cAMP (or AM) with VEGF supported substantial induction of arterial ECs. Stimulation of cAMP pathway induced Notch signal activation in ECs. The arterializing effect of VEGF and cAMP was abolished in recombination recognition sequence binding protein at the Jκ site deficient ES cells lacking Notch signal activation or in ES cells treated with γ-secretase inhibitor. Nevertheless, forced Notch activation by the constitutively active Notch1 alone did not induce arterial ECs. Conclusions— Adrenomedullin/cAMP is a novel signaling pathway to activate Notch signaling in differentiating ECs. Coordinated signaling of VEGF, Notch, and cAMP is required to induce arterial ECs from vascular progenitors.
Molecular mechanisms controlling arterial–venous specification have not been fully elucidated. Previously, we established an embryonic stem cell differentiation system and demonstrated that activation of cAMP signaling together with VEGF induces arterial endothelial cells (ECs) from Flk1+ vascular progenitor cells. Here, we show novel arterial specification machinery regulated by Notch and β-catenin signaling. Notch and GSK3β-mediated β-catenin signaling were activated downstream of cAMP through phosphatidylinositol-3 kinase. Forced activation of Notch and β-catenin with VEGF completely reconstituted cAMP-elicited arterial EC induction, and synergistically enhanced target gene promoter activity in vitro and arterial gene expression during in vivo angiogenesis. A protein complex with RBP-J, the intracellular domain of Notch, and β-catenin was formed on RBP-J binding sites of arterial genes in arterial, but not venous ECs. This molecular machinery for arterial specification leads to an integrated and more comprehensive understanding of vascular signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.